Verilog
Hardware Description Language

SoC Research Lab.

kscho@hufs.ac.kr

’:_[:J Hankuk University of Foreign Studies SoC Research Lab.



What is Verilog Language ?

» A hardware description language that provides a means of specifying a
digital system at awide range of levels of abstraction

» Supportsthe early conceptual stages of design with its behavioral level
of abstraction and the later implementation stages with its structural
level abstraction.

* Provides hierarchical constructs, allowing the designer to control the
complexity of adescription.

f_: Hankuk University of Foreign Studies SoC Research Lab. 2



History of Verilog

e 1981

— A CAE software company called Gateway Design Automation was
founded by Prabhu Goel.

— One of Gateway’ s first employees was Phil Moorby, who was an origina

author of GenRad’' s Hardware Description Language (GHDL) and HILO
simulator.

e 1983
— Gateway released the Verilog Hardware Description Language known as
Verilog HDL or simply Verilog together with a Verilog simulator.
« 1985

— Thelanguage and simulator were enhanced and the new version of the
simulator was called Verilog-XL.

f_: Hankuk University of Foreign Studies SoC Research Lab.



History of Verilog

e 1983 to 1987

— TheVerilog-XL simulator gained a strong foothold among advanced,
high-end designers mainly because it was fast, especialy at the gate level
and could handle designs in excess of 100,000 gates.

e 1987

— Another startup company, Synopsys, began to use the proprietary Verilog
behavioral language as an input to their synthesis product.

— The |IEEE released the VHDL standard, drawing attention to the
possibilities of top-down design using a behavioral HDL and synthesis.

o December 1989
— Cadence bought Gateway.

f_: Hankuk University of Foreign Studies SoC Research Lab. 4



History of Verilog

e Early 1990

Cadence split the Verilog HDL and the Verilog-XL simulator into
separate products, and then released the Verilog HDL to the public
domain.

Cadence did this partly to compete with VHDL, which was a
nonproprietary HDL, and mostly because Verilog users wanted to share
models and knowledge about Verilog, which was not easy with a
proprietary language.

Open Verilog I nternational (OVI) was formed to control the language
specification.

OVI isan industry consortium comprised of both Verilog users and CAE
vendors.

f_: Hankuk University of Foreign Studies SoC Research Lab. 5



History of Verilog

e 1990
— Nearly al ASIC foundries supported Verilog and most used Verilog-XL
as a golden simulator.

— The golden simulator is the one that an ASIC vendor will use to sign-off a
chip against, and guarantee that a manufactured chip will meet the same
timing as that of the smulated model.

e 1993

— Of all designs submitted to ASIC foundries in this year, 85% were
designed and submitted using Verilog. (Source EE Times))

e 1995
— The Verilog language was reviewed and adopted by the IEEE as | EEE
Standard 1364-1995.

f_: Hankuk University of Foreign Studies SoC Research Lab. 6



VHDL vsVerilog : Capability

» Hardware structure can be modeled equally effectively in both VHDL
and Verilog.

* The choice of which to useis not based solely on technical capability
but on:
— Personal preferences
— EDA tool availability
— Commercial, business and marketing issues.

 The modeling constructs of VHDL cover adlightly higher levels of
behavioral abstraction than those of Verilog.

"_fr, Hankuk University of Foreign Studies SoC Research Lab. 7



VHDL vsVerilog : Compilation

« VHDL

— Multiple design units (entity-architecture pairs) that reside in the same
system file, may be separately compiled if so desired.

— It'sagood design practice to keep each design unit in its own system file.
 Verilog
— TheVerilogis still rooted in its native interpretative mode.

— Compilation is a means of speeding up simulation, but has not changed
the original nature of the language.

— Care must be taken with both the compilation order of code writtenin a
single file and the compilation order of multiplefiles.

— Simulation results can change by ssimply changing the order of
compilation.

"__;- Hankuk University of Foreign Studies SoC Research Lab. 8



e
VHDL vsVerilog : Data Types

« VHDL
— A multiple of language or user-defined data types can be used.

— Dedicated conversion functions are needed to convert objects from one
type to another.

— VHDL models may be easier to write and clearer to read because of its
multiple data types such as enumerated data types.

 Verilog

— Verilog datatypes are very simple, easy to use and very much geared
towards modeling hardware structure as opposed to abstract hardware
modeling.

— All datatypes are defined by the Verilog language and not by the user.
— Verilog may be preferred because of the ssmplicity of its data types.

f_,, Hankuk University of Foreign Studies SoC Research Lab. 9



VHDL vsVerilog : Design Reusability

« VHDL

— Procedures and functions may be placed in a package so that they are
available to any design unit that uses them.

* Verilog
— Thereisno concept of packagesin Verilog.

— Functions and procedures used within a model must be defined in the
modul e statement with which it will be used.

— To make functions and procedures generally accessible from different
modul e statements, they must be placed in a separate system file and
included using the “include compiler directive.

f_: Hankuk University of Foreign Studies SoC Research Lab. 10



e
VHDL vsVerilog : Easiest to Learn

« Starting with zero knowledge of either language, Verilog is probably
the easiest to grasp and understand.

— This assumes that the Verilog compiler directive language and the
Programming Language Interface (PL1) language are not included.

— If these languages are included, they can be looked upon as two additional
languages that need to be learned.

 VHDL may seem lessintuitive at first for two primary reasons:

— Itisvery strongly typed, which is afeature that makes it robust and
powerful for the advanced user after alonger learning phase.

— There are many ways to model the same circuit, especially those with
large hierarchical structures.

f_,, Hankuk University of Foreign Studies 11



VHDL vsVerilog : Annotation

o A spin-off from Verilog isthe Standard Delay Format (SDF), a
general-purpose format used to define the timing delay in acircuit.

 Theformat provides abidirectional link between chip layout tools, and
either synthesis or ssmulation tools in order to provide more accurate
timing representations.

 The SDF format is now an industry standard in its own right.

f_i; Hankuk University of Foreign Studies SoC Research Lab. 12



VHDL vsVerilog : High-Level Constructs

 VHDL has more high-level constructs and features than Verilog.

— Package statements for model reuse

— Configuration statements for configuring design structure
— Generate statements for replicating structure
— Generic statements for generic models that can be individually
characterized, for example, bit width
» Except for being able to parameterize models by overloading
parameter constants, there is no equivalent to the high-level VHDL
modeling statementsin Verilog.

"__;- Hankuk University of Foreign Studies SoC Research Lab. 13



L
VHDL vsVelog : Language Extensions

* The use of language extensions will make a model nonstandard and
most likely not portable across other design tools.

e Sometimes necessary in order to achieve the desired results.
« VHDL

— Hasan attribute called ‘foreign that allows architectures and subprograms
to be modeled in another language.

 Verilog
— The PLI is an interface mechanism between Verilog models and Verilog
software tools.

— A designer, or more likely, a Verilog tool vendor, can specify user-defined
tasks or functions in the C programming language, and then call them
from the Verilog source description.

f_,, Hankuk University of Foreign Studies 14



VHDL vsVerilog : Libraries

« VHDL

— A library isastorage area in the host environment for compiled entities,
architectures, packages and configurations.

— Useful for managing multiple design projects.
 Verilog
— Thereis no concept of alibrary in Verilog.

— Duetoitsorigin as an interpretive language.

’:_D Hankuk University of Foreign Studies SoC Research Lab. 15



VHDL vsVerilog : Low-Level Constructs

« VHDL
— Simplelogical operators are built into the language.
— NOT, AND, OR, NAND, NOR, XOR and XNOR
— Any timing must be separately specified using the after clause.

 Verilog
— The Verilog language was originally developed with gate-level modeling
iIn mind, and so has very good constructs for modeling at this level.

— Also hasavery good constructs for modeling the cell primitives of ASIC
and FPGA libraries, e.g., User-Defined Primitives (UDP), truth tables and
the specify block for specifying timing delays across a module.

"_t, Hankuk University of Foreign Studies SoC Research Lab. 16



VHDL vsVerilog : Managing Large Designs

« VHDL

— Configuration, generate and package statements, together with the generic
clause, all help manage large design structures.

* Verilog

— There are no statements in Verilog that help manage large designs.

’:_D Hankuk University of Foreign Studies SoC Research Lab. 17



VHDL vsVeilog : Operators

 The mgority of operators are the same between the two languages.
e VHDL

— Hasthe mod operator that is not found in Verilog.

 Verilog
— Does have very useful unary operators that are not predefined in VHDL.

— A loop statement can be used in VHDL to perform the same operation as a
Verilog unary reduction operator.

I
-

_|:; Hankuk University of Foreign Studies SoC Research Lab. 18



VHDL vsVerilog : Parameterizable Models

« VHDL

— A specific bit width model can be instantiated from a generic n-bit model
using the generic clause.

— The generic modd will not synthesize until it is instantiated and the value
of the generic given.

 Verilog
— A specific bit width model can be instantiated from a generic n-bit model
using overloaded parameter values.

— The generic model must have a default parameter value defined.

— Inthe absence of an overloaded value being specified, it will still
synthesize, but will use the default parameter settings.

"_t, Hankuk University of Foreign Studies SoC Research Lab. 19



e
VHDL vsVerilog : Procedures and Tasks

« VHDL

— Allows concurrent procedure calls.

 Verilog

— Does not alow concurrent task calls.

{_[:J Hankuk University of Foreign Studies SoC Research Lab. 20



VHDL vsVerilog : Readability

A matter of coding style and experience than language feature

VHDL
— |tsroots are hased on Ada

Verilog
— Its constructs are based approximately 50% on C and 50% on Ada.

C programmers may prefer Verilog over VHDL.

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 21



VHDL vsVerilog : Structural Replication

« VHDL

— The generate statement replicates a number of instances of the same
design unit or some subpart of a design, and connects it appropriately.

 Verilog

— Thereisno equivalent to the generate statement in Verilog.

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 22



VHDL vsVerilog : Test Harnesses

o Designerstypically spend about 50% of their time writing
synthesizable models and the other 50% writing a test harness to verify

the synthesizable models.

* Test harnesses are not restricted to the synthesizable subset and so are
freeto use the full potential of the language.

 VHDL has generic and configuration statements that are useful in test
harnesses, that are not found in Verilog.

I
f_: Hankuk University of Foreign Studies SoC Research Lab. 23



e
e
VHDL vsVerilog : Verboseness

« VHDL

— Because VHDL is a strongly-typed language, models must be coded
precisely with defined and matching data types.

— Models are often more verbose and the code often longer than its Verilog
equivalent.

L
’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 24




VHDL vsVerilog : Verboseness

 Verilog

Signals representing objects of different bit widths may be assigned to
each other.

The signal representing the smaller number of bitsis automatically padded
out to that of the larger number of bits, and isindependent of whether it is
the assigned signal to or not.

Unused bits will be automatically optimized away during the synthesis
process.

Has the advantage of not needing to model quite so explicitly asin VHDL.

Has the disadvantage that unintended modeling errors will not be
identified by an analyzer.

"_‘H Hankuk University of Foreign Studies SoC Research Lab. 25



