Modules

 TheVerilog language describes a digital system as a set of modules.

» Each module has an interface to other modules as well as a description
of its contents.

* A module represents alogical unit that can be described either

— by specifying itsinternal logical structure — for instance, describing the
actual logic gatesit is comprised of, or
— by describing its behavior in a program-like manner — in this case,
focusing on what the module does rather than on its logical
Implementation.
* The modules are then interconnected with nets, allowing them to
communicate.

.
"_t, Hankuk University of Foreign Studies SoC Research Lab. 1

A Structural Description

A smple NAND latch

module ffNand; presst ——

wire g, gBar;
reg preset, clear;

nand #1 dlear g2)@—l— qBar
gl (g, gBar, preset),

g2 (gBar, q, clear);

endmodule

f_[,l Hankuk University of Foreign Studies SoC Research Lab. 2

A Structural Description

A smple NAND latch

module ffNand; — Module name
wire g, gBar; — Wire declarations

reg preset, clear; — Register declarations

nand #1 — NAND gate having a delay of one time unit
gl (g, gBar, preset), — Instantiation of a NAND gate
g2 (gBar, g, clear); — Instantiation of a NAND gate
endmodule

’:_[J Hankuk University of Foreign Studies SoC Research Lab. 3

A Structural Description

A smple NAND latch

— Each module definition includes the keyword module and its name, and is
terminated by the endmodul e statement.

— The wires, declared by the wire statements, are used to transmit logic
values among the submodules of this module.

— Theregisters, declared by the reg statements, represent the storage
elements that will hold logic values.

— NAND gates are one of the predefined logic gate types in the language.
— The gate instances are connected to the wires and registers.

— Thefirst label in the parentheses is the gate’ s output and the others are
Inputs.

"__:- Hankuk University of Foreign Studies SoC Research Lab. 4

A Structural Description

 Module definition versus modul e instantiation

— Using the modul e statement, we define a module once specifying all of its
Inner detail.
— The module may be used (instantiated) in the design many times.

— Each of these instantiations are called instances of the module, and can be
separately named and connected differently.

"_|:J Hankuk University of Foreign Studies SoC Research Lab. 5

A Structural Description

e Nets
— Gates are connected by nets.

— Nets are one of the two fundamental data types of the language.
— Registers are the other datatype.

— Nets are used to model an electrical connection between structural entities
such as gates.

— A wireisonetype of net.
— Other net typesinclude wired-AND, wired-OR and trireg connections.
— Thetrireg net models awire as a capacitor that stores electrical charge.

— Except for the trireg net, nets do not store values but only transmit values
that are driven on them.

f_'; Hankuk University of Foreign Studies SoC Research Lab. 6

A Structural Description

* Hierarchical descriptions

Several gates or modules are built into larger modulesin a hierarchical
manner.

Inasimple NAND latch example, NAND gates were used to build the
ffNand module.

This ffNand modul e could then be used as a piece of alarger module by
Instantiating it into another module.

The use of hierarchical descriptions allows usto control the complexity of
a design by breaking the design into smaller and more meaningful
submodules.

When instantiating the submodules, all we need know about them is their
interface.

"_‘H Hankuk University of Foreign Studies SoC Research Lab. 7

e
Simulating a Module

A simple NAND latch to be simulated

module ffNandSim;
wire g, gBar;
reg preset, clear;

nand #1
gl (g, gBar, preset),
g2 (gBar, q, clear);

{_[:J Hankuk University of Foreign Studies SoC Research Lab. 8

e
Simulating a Module

initial
begin
$monitor($time,,
“preset = %b clear = %b q = %b gBar = %b”,
preset, clear, g, gBar);
#10 preset = 0; clear = 1;
#10 preset = 1,
#10 clear = 0;
#10 clear = 1;
#10 $finish;
end
endmodule

f_[:,l Hankuk University of Foreign Studies SoC Research Lab. 9

Simulating aModule

A smple NAND latch to be ssmulated includes
— A structural description of asimple NAND latch
— The statements that will provide stimulus to the NAND gate instances
— The statements that will monitor the changes in the outputs.

e The monitor statement

— A simulation command to monitor and print a set of values when any one
of the values changes

— % represents a printing control for binary.
— The,, put extra spaces between the display of the time and the quoted
string.

f_'; Hankuk University of Foreign Studies SoC Research Lab. 10

Simulating aModule

e Simulator

Executes the statements in the initial statement and propagates changed
values from the outputs of gates and registers to other gate module inputs.

Keeps track of time, causing the changed values appear at some specified
time in the future rather than immediately.

The future changes are typically stored in atime-ordered event queue.

When the simulator has no further statement execution or value
propagation to perform at the current time, it finds the next time-ordered
event from the event queue, updates time to that of the event, and executes
the event.

Continues until there are no more events to be ssimulated or the user halts
the ssmulation.

f_,, Hankuk University of Foreign Studies 11

Simulating a Module

* How does the ssimulator work in this example ?

The first assignment statement
#10 preset = 0; clear = 1;

specifies the registers preset and clear will be loaded zero and one
respectively 10 time units from the current time (time 0).

At time 10, preset and clear are set to zero and one respectively, and then
the changed values are propagated.

At time 11, g becomes one, which is the result of preset being zero.

The value of g is propagated to the input of NAND gate g2 which isthen
scheduled to propagate its changed output 1 time unit in the future.

At time 12, gBar becomes zero.

"_t, Hankuk University of Foreign Studies SoC Research Lab. 12

Simulating a Module

* How does the ssimulator work in this example ?

— The second assignment statement
#10 preset = 1;
specifies the register preset will be loaded one 10 time units from the
current time (time 10).
— At time 20, preset is set to one, and g and gBar remain constant.
— Thethird assignment statement
#10 clear = 0;

specifies the register clear will be loaded zero 10 time units from the
current time (time 20).

— At time 30, clear is set to zero and the latch changes state after 2 gate
delays.

f_i; Hankuk University of Foreign Studies SoC Research Lab. 13

Simulating a Module

* How does the ssimulator work in this example ?

— The fourth assignment statement
#10 clear = 1;

specifies the register clear will be loaded one 10 time units from the
current time (time 30).

— At time40, clear is set to one, and q and gBar remain constant.
— Thelast initial statement
#10 $finish;

stops the simulation and returns control to the host operating system at
time 50.

L
-

_|:; Hankuk University of Foreign Studies SoC Research Lab. 14

Simulating a Module

» Resultsof simulating the ssimple NAND latch

O preset = x clear = x q=Xx gBar =X
10 preset =0clear =1 g=x gBar =X
11 preset=0clear =1g=1qgBar =X
12 preset=0clear=1q=1gBar=0
20preset=1clear=1g=1gBar=0
30preset=1clear=0q=1qgBar=0
3lpreset=1clear=0gq=1qgBar=1
32preset=1clear=0g=00gBar=1
A0preset=1clear=1g=0gBar=1

"_|:J Hankuk University of Foreign Studies

SoC Research Lab.

15

o
o
Simulating aModule

» Results of simulating the simple NAND latch

prese

clear

x|
a | x|
x|

gBar

10 20 30

L
(L) Hankuk University of Foreign Studies

o

40

50

SoC Research Lab.

16

Simulating a Module

 Thefour valuesthat abit may have in the ssmulator
— 1: true (one) state
— 0: fase (zero) state
— X :unknown state
— z: high-impedance state

 Why were preset and clear defined as registers ?
— A means of setting and holding the input values during simulation

— Wires do not hold values but merely transmit val ues.

f_[; Hankuk University of Foreign Studies SoC Research Lab.

17

e
Module Hierarchy

o Top-level view

board

m16 m555

{_[:J Hankuk University of Foreign Studies SoC Research Lab. 18

Module Hierarchy

e Counter module

module m16 (value, clock, fifteen, altFifteen);

output [3:0] value;

output fifteen,
altFifteen;

input clock;

":_D Hankuk University of Foreign Studies SoC Research Lab. 19

Module Hierarchy

dEdgeFF a (value[0], clock, ~value[0]),
b (value[1], clock, value[1] ~ value[0]),
c (vaueg[2], clock, valueg[2] ~ &value[1:0]),
d (value[3], clock, valug[3] M &value2:0]);

assign fifteen = valug[0] & valug[1] & valug 2] & value[3];
assign altFifteen = &value;
endmodule

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 20

Module Hierarchy

e Ports

— Must be declared to be inputs, outputs, or inouts.

 Vectorsand scalars

— The sguare brackets construct declares the range of bit numbers, the first
number being the most significant bit and the second being the least
significant bit.

— The bit numbers used in the specifications must be positive.

— Registers, nets and ports declared to have arange of bits are said to be
Vectors.

— Single-bit registers, nets and ports are said to be scalars.

L
-

|:. Hankuk University of Foreign Studies SoC Research Lab. 21

Module Hierarchy

o Association of ports

— The order of the namesin the instantiation port list must match the order
of portsin the definition.

— Analogous to the software situation where we need to know the order of
parameters when calling a subroutine.

— If the dEdgeFF module has the following port definition:
dEdgeFF (q, clock, data)
the instance a will have the following connections:
g (output of dEdgeFF) — value[0] (output of M16)
clock (input of dEdgeFF) — clock (input of m16)
data (input of dEdgeFF) - ~value[0] (output of M16)

f_: Hankuk University of Foreign Studies SoC Research Lab. 22

Module Hierarchy

o Operators used in this example

— ~ : Bitwise negation
Complements each bit in the operand.
— M Bitwise XOR
Produces the bitwise exclusive OR of two operands.
— & : Unary reduction AND
Produces the single bit AND of all of the bits of the operand.
— & : Bitwise AND
Produces the bitwise AND of two operands.
Unary reduction and binary bitwise ANDs are distinguished by syntax.

_|:; Hankuk University of Foreign Studies SoC Research Lab. 23

-

e
Module Hierarchy

 Theassign statement
— Another way of describing a combinational logic function

— Cadlled continuous assignment statement because the result of the logical
expression on the right-hand side of the equal sign is evaluated anytime
one of itsinputs changes and the result drives the output in a simulation.

— Allows us to describe a combinational logic function without regard to its
actual structural implementation, i.e., there are no instantiated modules.

— Inthis example, fifteen and altFifteen have the same logic function.

» Part-select of avector

— A selected range of bits from the entire vector is used in the operation.
value[1:0] ~ value[3:0]

"_,, Hankuk University of Foreign Studies SoC Research Lab. 24

Module Hierarchy

» D-type negative edge-triggered flip-flop module

module dEdgeFF (q, clock, data);
output q;

reg o
input clock, data;

initial
#109=0;
aways
@(negedge clock) g = #10 data;
e EIAmodule. —

f_[,l Hankuk University of Foreign Studies SoC Research Lab. 25

Module Hierarchy

 Registers

— A register named g drives output g.
— Register q directly models the flip-flop’ s storage hit.

— When simulated, qisinitialized to be zero as specified in theinitial
Statement.

* The always statement
— Basisfor modeling sequential behavior

— Essentially awhile (true) statement
— Includes one or more procedural statements that are repeatedly executed.
— The procedural statements within the always statement execute much like

a software program.

f_i; Hankuk University of Foreign Studies SoC Research Lab. 26

Module Hierarchy

* @(negedge clock) g = #10 data;
— When there is a negative edge on the clock input, then the value of the
data input will be copied and, after 10 time units, register g will be loaded
with that copied value.

— When gisloaded, it is loaded with the value that data had before the delay
started.

» Behavioral descriptions
— Capture all of the functionality of the module.

— Leavethe actual logical implementation open to the designer.

[
-

|:. Hankuk University of Foreign Studies SoC Research Lab. 27

e
e
Module Hierarchy

» Clock generator module

module m555 (clock);

output clock;

reg clock;
initial

#5 clock = 1;
aways

#50 clock = ~clock;
endmodule

":_D Hankuk University of Foreign Studies SoC Research Lab. 28

Module Hierarchy

» Clock generator module

— Theclockisinitialized to be one after 5 time units have passed.

— After the first 50 time units have passed, the always statement will be
scheduled to execute and change its value.

— Because clock will change value every 50 time units, we have created a
clock with a period of 100 time units,

A

clock [X

05 50 100

I
-

_|:; Hankuk University of Foreign Studies SoC Research Lab. 29

Module Hierarchy

 Two different delay mechanisms
#50 clock = ~clock;
g = #10 data;

— Thefirst statement waits for 50 time units and loads clock with its
complement at that time.

— The second statement makes an internal copy of the current value of data,
waits 10 time units, and then loads g with that internal copy.

» Thetimescale compiler directive for real time units
“timescale 1ns/ 100ps

— Used to attach units (1ns) and a precision (100ps) for rounding to the time

numbers.
[

f_i; Hankuk University of Foreign Studies SoC Research Lab. 30

Module Hierarchy

» Top-level module

modul e board;
wire [3:0] count;

wire clock, f, af;

m16 counter (count, clock, f, af);
m555 clockGen (clock);

always @(posedge clock)
$display ($time,,, “count = %d, f = %d, af = %d”, count, f, af);
mdmOduLE,

’:_D Hankuk University of Foreign Studies SoC Research Lab. 31

Module Hierarchy

o Top-level view with internal connections

board

count f af clock

m16 m555

’:_D Hankuk University of Foreign Studies SoC Research Lab. 32

Module Hierarchy

 Thedisplay statement

Similar to a print statement in a programming language.

%d represents a printing control for an unsigned decimal integer.
The,,, put extra spaces between the display of the time and the quoted
string.

In combination with the always statement, the printout in this example
will display the values at the positive edge of the clock.

"_|:J Hankuk University of Foreign Studies SoC Research Lab. 33

Module Hierarchy

e Simulation trace

5 count=x,f=x,af =x

100 count=1,f=0,af =0
200 count=2,f=0,af =0
300 count=3,f=0,af =0
400 count=4,f=0,af =0
500 count=5,f=0,af =0
600 count=6,f=0,af =0
700 count=7,f=0,af =0
800 count=8,f=0,af =0

200 COUNL =9, 120, 80 =0

’:_D Hankuk University of Foreign Studies

SoC Research Lab.

34

Module Hierarchy

1000 count=10,f=0,af =0
1100 count=11,f=0,af =0
1200 count=12,f=0,af =0
1300 count=13,f=0,af =0
1400 count=14,f=0,af =0
1500 count=15,f=1,af =1
1600 count=0,f=0,af =0
1700 count=1,f=0,af =0
1800 count=2,f=0,af =0
1900 count=3,f=0,af =0

’:_D Hankuk University of Foreign Studies SoC Research Lab. 35

Behavioral Modeling

 Behaviora modd

An abstraction of how the module works

The outputs of the module are described in terms of its inputs.

No effort is made to describe how the module isimplemented in terms of
logic gates.
Useful early in the design process, when a designer is more concerned

with simulating the system'’ s intended behavior to understand its gross
performance characteristics with little regard to its final implementation.

Later, structural models with accurate detail of the final implementation
are substituted and resimulated to demonstrate functional and timing
correctness.

"_t, Hankuk University of Foreign Studies SoC Research Lab. 36

Behavioral Modeling

* Counter module described with behavioral statements

module m16Behav (value, clock, fifteen, altFifteen);

output [3:0] value;

reg [3:0] value;

output fifteen, atFifteen;
reg fifteen, altFifteen;
input clock;

initial

vaue=0;
e ANAYS

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 37

o
e
Behavioral Modeling

begin
@(negedge clock) #10 value = value + 1;
if (value == 15)
begin
altFifteen = 1; fifteen = 1;
end
else
begin
atFifteen = O; fifteen = 0;
end
end

endmodule

‘:_[:J Hankuk University of Foreign Studies SoC Research Lab.

38

Behavioral Modeling

 Registers

— The declaration of the registers and outputs of the same name implicitly
connect the outputs of the registers to the ports.

— In behavioral descriptions, the procedural statements require the use of
registers (or variables in software programming) to store the values.

— The structural version of m16 did not use registers, rather it implicitly
connected the output driversin the instantiated flip-flops to the output port
with awire.

|
-

_|:.- Hankuk University of Foreign Studies SoC Research Lab. 39

Behavioral Modeling

e Constant numbers

— Can be specified in decimal, hexadecimal, octal, or binary.

— May optionally start witha+ or -.
— Can begiven in one of two forms.
— Thefirst form

» An unsized decimal number specified using the digits from the

sequence0to 9

» Verilog calculates asize for use in an expression.

’:_D Hankuk University of Foreign Studies

SoC Research Lab.

40

Behavioral Modeling

e Constant numbers

— The second form specifies the size of the constant and takes the form:
ss...sfnn...n
> ss...S :thesizein bits (Specified as a decimal number.)
> f . the base format (d, h, o, b or D, H, O, B)
» nn...n : the value (For hexadecimal, a~f or A ~ F used.)
» x and z values may be given in all but the decimal base.
> In hexadecimal, an x or z would represent 4 bits, in octal, 3 bits.
» Normally, zeros are padded on the left if nn...n<ss...s.
» Thefirst digit of nn...nisx or z, then x or z is padded on the | eft.

» An underline character may be inserted to improve readability, which
must not be the first character (e.g., 12'bOx0x_1101 0zx1).

"__:- Hankuk University of Foreign Studies SoC Research Lab. 41

Behavioral Modeling

e Constant numbers

— The statement in the example
atFifteen = 0;
could be written more exactly as
altFifteen = 1'b0;

meaning that one-bit operand with value zero specified in binary isloaded
Into register altFifteen.

— Theissue of whether to use one form versus another is a matter of
readability and exactness.

’:_[J Hankuk University of Foreign Studies SoC Research Lab. 42

Behavioral Modeling

« Mixing structure and behavior

— The natural evolution of adigital system isfrom abstract behavior to
detailed, implementable structure.

— Along the design path, the design will be represented at times by a mixture
of behavioral and structural models.

» Not all modules of adesign will be designed down to the detailed
structural level at the sametime.

» Part of adesign may make use of off-the-shelf (pre-designed)
hardware.

|
-

_|:.- Hankuk University of Foreign Studies SoC Research Lab. 43

Fibonacci Number Generator Example

o Top-level view

top
number numberOut
flag
ng fng
ready
numProduced numConsumed

’:_D Hankuk University of Foreign Studies SoC Research Lab. 44

Fibonacci Number Generator Example

e Top-level module

module top ();

wire flag, numProduced, numConsumed;

wire [15:0] number, numberOut;

nandL atch ready (flag, , numConsumed, numProduced);

numberGen ng (number, numProduced, flag);

fibNumberGen fng (number, flag, numConsumed, numberOuit);
endmodule

"_|:J Hankuk University of Foreign Studies SoC Research Lab.

Fibonacci Number Generator Example

o Operations

The seed-number generator module (ng) produces a number n and passes
It onto the Fibonacci number generator module (fng).

The Fibonacci number generator module (fng) calculates the n-th
Fibonacci number.

The latch module (ready) is provided for the two modules to signal when
to pass another number.

The behavioral descriptions in ng and fng execute concurrently and pass
information when the latch output indicates that previous data has been
consumed and new valid datais ready.

Thelatch acts as adata-valid signal for a single element queue between
producer and consumer modul es.

f_,, Hankuk University of Foreign Studies 46

e
Fibonacci Number Generator Example

e The NAND latch module

module nandL atch (g, gBar, set, reset);
output q, qBar;
input Set, reset;

nand #2
(g, qBar, set),
(gBar, q, reset);
endmodule

’:_D Hankuk University of Foreign Studies SoC Research Lab. 47

Fibonacci Number Generator Example

e |nstance names

— Instances of primitive gates, such as NAND and NOR, need not be
individually named.

— Instances of modules must be individually named.

* Unconnected ports
nandL atch ready (flag, , numConsumed, numProduced);
!
module nandL atch (g, gBar, set, reset);

"_|:J Hankuk University of Foreign Studies SoC Research Lab. 48

Fibonacci Number Generator Example

* The seed-number generator module

module numberGen (number, numProduced, flag);

output [15:0] number;
output numProduced;
input flag;

reg [15:0] number;

reg numProduced,;

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 49

e
e
Fibonacci Number Generator Example

initial

begin
number = O;
numProduced = 1;

end

aways

begin
wait (flag = = 1) number = number + 1;
#100 numProduced = 0;
#10 numProduced = 1,

end

endmodule

’:_D Hankuk University of Foreign Studies SoC Research Lab. 50

S
Fibonacci Number Generator Example

e Operations of the seed-number generator module
— Waitsfor the input flag to be one.

— As soon as the input flag becomes one, the always statement can then
continue executing.

— Theflagisthe g output of the nandLatch which, when set, signifies that
the previous value has been received and another can be generated.

— A new seed number is generated when the input flag becomes one, and a
delay of 100 time units will occur.

— The numProduced is set to zero for 10 time units, causing the g output of
the nandLatch to be cleared to signify that a new number is available.

f_,, Hankuk University of Foreign Studies 51

Fibonacci Number Generator Example

* The Fibonacci number generator module

module fibNumberGen (startingValue, flag, numConsumed, fiobNum);

input [15:0] startingValue;

input flag;

output numConsumed;
output [15:0] fioNum;

reg numConsumed;

reg [15:0] fibNum;

reg [15:0] count, oldNum, temp;

"_|:J Hankuk University of Foreign Studies SoC Research Lab.

52

e
Fibonacci Number Generator Example

initial
begin
numConsumed = 0;
#10 numConsumed = 1;
$monitor ($time,, “fibNum = %d, startingValue = %d",
fiobNum, startingValue);
end
always
begin

wait (flag = = 0) count = startingValue;

oldNum :_1i.

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 53

Fibonacci Number Generator Example

numConsumed = 0;
#10 numConsumed = 1; // Signal ready for new input data

for (fiobNum = 0; count !'= 0O; count = count - 1)

begin
temp = fibNum;
fibNum = fibNum + oldNum;
oldNum = temp;

end

$display (“%d fibNum = %d”, $time, fibNum);
end
endmodule L

’:_[J Hankuk University of Foreign Studies SoC Research Lab. 54

e
Fibonacci Number Generator Example

o Operations of the Fibonacci number generator module
— Waitsfor the input flag to be zero.

— The fibNumber Gen module waits on a signal complementary to what the
number Gen module waits for.

— When the input flag becomes zero, a 10 time unit pulseis sent out to set
the nandLatch module and signal the number Gen module to begin
producing another new seed number.

— The n-th Fibonacci number is calculated in register fibNum by the for loop
statement.

— The fibNumber Gen module needs a copy of startingValue becauseit isan
input and cannot be changed with a procedural statement.

f_,, Hankuk University of Foreign Studies 55

Fibonacci Number Generator Example

« Edge-triggering versus level-sensitive mechanism
— The event control (@) statement models an edge-triggering mechanism.
@(posedge clock) number = number + 1,
— Thewait statement islevel sensitive.

wait (clock = = 1) number = number + 1;

’:_[J Hankuk University of Foreign Studies SoC Research Lab. 56

Fibonacci Number Generator Example

« Assignment statements
— The continuous assignment statement
wire a
assign a=b]|(c& d);
or
wire a=b|(c& d);

» Theright-hand side of the equal sign can be thought of as alogic gate
whose output is connected to awire a.

» For any change at any timeto b, ¢, or d, the output of the expression
will be evaluated and made to drive wire a.

» May only drive nets such asawire.

L
-

|:. Hankuk University of Foreign Studies SoC Research Lab. 57

Fibonacci Number Generator Example

« Assignment statements

— The procedural assignment statement
oldNum = 1;
» Found in initial and always statements.
» Can only load values into registers or memory elements.

» The loading of the value is done only when control is transferred to
the procedural statement.

» Control istransferred to a procedural assignment statement in a
sequential manner, like a normal software program.

» The flow of control isinterrupted either by an event (@) or wait
statement.

f_: Hankuk University of Foreign Studies SoC Research Lab. 58

Fibonacci Number Generator Example

* Wiresattached to aregister
reg [15:0] newValue;
wire [15:0] y = newValue;
— Wirey is connected to the output of register newValue.

— Anytime newValue is loaded procedurally with a new value, it will drive
wirey and the inputs it is connected to with that new value.

f_[; Hankuk University of Foreign Studies SoC Research Lab. 59

Testbench

» Testbench approach

Better to separate the design’ s description and the means of testing it.

The design may be simulated and monitored through its ports, and later
synthesized using other CAD tools such as alogic synthesizer.

If the behavior to test a design isincluded with the design’s module, then
It should be removed when synthesizing L1 an error prone process.

Testbench approach isto have atop module within which there are two
other modules, one representing the system being designed, and the other
representing the test generator and monitor.

f_: Hankuk University of Foreign Studies SoC Research Lab. 60

e
e
Testbench

 Top module

modul e testBench;
wire g, gBar, preset, clear;

design ffNand d (q, gBar, preset, clear);
test ffNand t (g, gBar, preset, clear);
endmodule

":_D Hankuk University of Foreign Studies SoC Research Lab. 61

e
Testbench

» Design module

module design_ffNand (g, gBar, preset, clear);
output g, gBar;
input preset, clear;

nand #1
g1 (0, oBar, preset),
g2 (gBar, q, clear);
endmodule

":_D Hankuk University of Foreign Studies SoC Research Lab. 62

e
e
Testbench

e Test module

module test_ffNand (q, gBar, preset, clear);
input g, gBar;
output preset, clear;
reg preset, clear;

i_[l) Hankuk University of Foreign Studies SoC Research Lab. 63

e
Simulating a Module

initial
begin
$monitor($time,,
“preset = %b clear = %b q = %b gBar = %b”,
preset, clear, g, gBar);
#10 preset = 0; clear = 1;
#10 preset = 1,
#10 clear = 0;
#10 clear = 1;
#10 $finish;
end
endmodule

f_[:,l Hankuk University of Foreign Studies SoC Research Lab. 64

