
SoC Research Lab.Hankuk University of Foreign Studies 1

Modules

• The Verilog language describes a digital system as a set of modules.

• Each module has an interface to other modules as well as a description
of its contents.

• A module represents a logical unit that can be described either
– by specifying its internal logical structure — for instance, describing the

actual logic gates it is comprised of, or

– by describing its behavior in a program-like manner — in this case,
focusing on what the module does rather than on its logical
implementation.

• The modules are then interconnected with nets, allowing them to
communicate.

SoC Research Lab.Hankuk University of Foreign Studies 2

A Structural Description

• A simple NAND latch

module ffNand;

wire q, qBar;

reg preset, clear;

nand #1

g1 (q, qBar, preset),

g2 (qBar, q, clear);

endmodule

g1

g2

preset

clear

q

qBar

SoC Research Lab.Hankuk University of Foreign Studies 3

A Structural Description

• A simple NAND latch

module ffNand; ← Module name

wire q, qBar; ← Wire declarations

reg preset, clear; ← Register declarations

nand #1 ← NAND gate having a delay of one time unit

g1 (q, qBar, preset), ← Instantiation of a NAND gate

g2 (qBar, q, clear); ← Instantiation of a NAND gate

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 4

A Structural Description

• A simple NAND latch
– Each module definition includes the keyword module and its name, and is

terminated by the endmodule statement.

– The wires, declared by the wire statements, are used to transmit logic
values among the submodules of this module.

– The registers, declared by the reg statements, represent the storage
elements that will hold logic values.

– NAND gates are one of the predefined logic gate types in the language.

– The gate instances are connected to the wires and registers.

– The first label in the parentheses is the gate’s output and the others are
inputs.

SoC Research Lab.Hankuk University of Foreign Studies 5

A Structural Description

• Module definition versus module instantiation
– Using the module statement, we define a module once specifying all of its

inner detail.

– The module may be used (instantiated) in the design many times.

– Each of these instantiations are called instances of the module, and can be
separately named and connected differently.

SoC Research Lab.Hankuk University of Foreign Studies 6

A Structural Description

• Nets
– Gates are connected by nets.

– Nets are one of the two fundamental data types of the language.

– Registers are the other data type.

– Nets are used to model an electrical connection between structural entities
such as gates.

– A wire is one type of net.

– Other net types include wired-AND, wired-OR and trireg connections.

– The trireg net models a wire as a capacitor that stores electrical charge.

– Except for the trireg net, nets do not store values but only transmit values
that are driven on them.

SoC Research Lab.Hankuk University of Foreign Studies 7

A Structural Description

• Hierarchical descriptions
– Several gates or modules are built into larger modules in a hierarchical

manner.

– In a simple NAND latch example, NAND gates were used to build the
ffNand module.

– This ffNand module could then be used as a piece of a larger module by
instantiating it into another module.

– The use of hierarchical descriptions allows us to control the complexity of
a design by breaking the design into smaller and more meaningful
submodules.

– When instantiating the submodules, all we need know about them is their
interface.

SoC Research Lab.Hankuk University of Foreign Studies 8

Simulating a Module

• A simple NAND latch to be simulated

module ffNandSim;

wire q, qBar;

reg preset, clear;

nand #1

g1 (q, qBar, preset),

g2 (qBar, q, clear);

SoC Research Lab.Hankuk University of Foreign Studies 9

Simulating a Module

initial

begin

$monitor($time,,

“preset = %b clear = %b q = %b qBar = %b”,

preset, clear, q, qBar);

#10 preset = 0; clear = 1;

#10 preset = 1;

#10 clear = 0;

#10 clear = 1;

#10 $finish;

end

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 10

Simulating a Module

• A simple NAND latch to be simulated includes
– A structural description of a simple NAND latch

– The statements that will provide stimulus to the NAND gate instances

– The statements that will monitor the changes in the outputs.

• The monitor statement
– A simulation command to monitor and print a set of values when any one

of the values changes

– %b represents a printing control for binary.

– The ,, put extra spaces between the display of the time and the quoted
string.

SoC Research Lab.Hankuk University of Foreign Studies 11

Simulating a Module

• Simulator
– Executes the statements in the initial statement and propagates changed

values from the outputs of gates and registers to other gate module inputs.

– Keeps track of time, causing the changed values appear at some specified
time in the future rather than immediately.

– The future changes are typically stored in a time-ordered event queue.

– When the simulator has no further statement execution or value
propagation to perform at the current time, it finds the next time-ordered
event from the event queue, updates time to that of the event, and executes
the event.

– Continues until there are no more events to be simulated or the user halts
the simulation.

SoC Research Lab.Hankuk University of Foreign Studies 12

Simulating a Module

• How does the simulator work in this example ?
– The first assignment statement

#10 preset = 0; clear = 1;

specifies the registers preset and clear will be loaded zero and one
respectively 10 time units from the current time (time 0).

– At time 10, preset and clear are set to zero and one respectively, and then
the changed values are propagated.

– At time 11, q becomes one, which is the result of preset being zero.

– The value of q is propagated to the input of NAND gate g2 which is then
scheduled to propagate its changed output 1 time unit in the future.

– At time 12, qBar becomes zero.

SoC Research Lab.Hankuk University of Foreign Studies 13

Simulating a Module

• How does the simulator work in this example ?
– The second assignment statement

#10 preset = 1;

specifies the register preset will be loaded one 10 time units from the
current time (time 10).

– At time 20, preset is set to one, and q and qBar remain constant.

– The third assignment statement

#10 clear = 0;

specifies the register clear will be loaded zero 10 time units from the
current time (time 20).

– At time 30, clear is set to zero and the latch changes state after 2 gate
delays.

SoC Research Lab.Hankuk University of Foreign Studies 14

Simulating a Module

• How does the simulator work in this example ?
– The fourth assignment statement

#10 clear = 1;

specifies the register clear will be loaded one 10 time units from the
current time (time 30).

– At time 40, clear is set to one, and q and qBar remain constant.

– The last initial statement

#10 $finish;

stops the simulation and returns control to the host operating system at
time 50.

SoC Research Lab.Hankuk University of Foreign Studies 15

Simulating a Module

• Results of simulating the simple NAND latch

0 preset = x clear = x q = x qBar = x

10 preset = 0 clear = 1 q = x qBar = x

11 preset = 0 clear = 1 q = 1 qBar = x

12 preset = 0 clear = 1 q = 1 qBar = 0

20 preset = 1 clear = 1 q = 1 qBar = 0

30 preset = 1 clear = 0 q = 1 qBar = 0

31 preset = 1 clear = 0 q = 1 qBar = 1

32 preset = 1 clear = 0 q = 0 qBar = 1

40 preset = 1 clear = 1 q = 0 qBar = 1

SoC Research Lab.Hankuk University of Foreign Studies 16

Simulating a Module

• Results of simulating the simple NAND latch

prese
t

clear

q

qBar

10 20 30 40 500

x

x

x

x

SoC Research Lab.Hankuk University of Foreign Studies 17

Simulating a Module

• The four values that a bit may have in the simulator
– 1 : true (one) state

– 0 : false (zero) state

– x : unknown state

– z : high-impedance state

• Why were preset and clear defined as registers ?
– A means of setting and holding the input values during simulation

– Wires do not hold values but merely transmit values.

SoC Research Lab.Hankuk University of Foreign Studies 18

Module Hierarchy

• Top-level view

board

m555m16

d c b a

SoC Research Lab.Hankuk University of Foreign Studies 19

Module Hierarchy

• Counter module

module m16 (value, clock, fifteen, altFifteen);

output [3:0] value;

output fifteen,

altFifteen;

input clock;

SoC Research Lab.Hankuk University of Foreign Studies 20

Module Hierarchy

dEdgeFF a (value[0], clock, ~value[0]),

b (value[1], clock, value[1] ^ value[0]),

c (value[2], clock, value[2] ^ &value[1:0]),

d (value[3], clock, value[3] ^ &value[2:0]);

assign fifteen = value[0] & value[1] & value[2] & value[3];

assign altFifteen = &value;

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 21

Module Hierarchy

• Ports
– Must be declared to be inputs, outputs, or inouts.

• Vectors and scalars
– The square brackets construct declares the range of bit numbers, the first

number being the most significant bit and the second being the least
significant bit.

– The bit numbers used in the specifications must be positive.

– Registers, nets and ports declared to have a range of bits are said to be
vectors.

– Single-bit registers, nets and ports are said to be scalars.

SoC Research Lab.Hankuk University of Foreign Studies 22

Module Hierarchy

• Association of ports
– The order of the names in the instantiation port list must match the order

of ports in the definition.

– Analogous to the software situation where we need to know the order of
parameters when calling a subroutine.

– If the dEdgeFF module has the following port definition:

dEdgeFF (q, clock, data)

the instance a will have the following connections:

q (output of dEdgeFF) → value[0] (output of m16)

clock (input of dEdgeFF) → clock (input of m16)

data (input of dEdgeFF) → ~value[0] (output of m16)

SoC Research Lab.Hankuk University of Foreign Studies 23

Module Hierarchy

• Operators used in this example
– ~ : Bitwise negation

Complements each bit in the operand.

– ^ : Bitwise XOR

Produces the bitwise exclusive OR of two operands.

– & : Unary reduction AND

Produces the single bit AND of all of the bits of the operand.

– & : Bitwise AND

Produces the bitwise AND of two operands.

Unary reduction and binary bitwise ANDs are distinguished by syntax.

SoC Research Lab.Hankuk University of Foreign Studies 24

Module Hierarchy

• The assign statement
– Another way of describing a combinational logic function

– Called continuous assignment statement because the result of the logical
expression on the right-hand side of the equal sign is evaluated anytime
one of its inputs changes and the result drives the output in a simulation.

– Allows us to describe a combinational logic function without regard to its
actual structural implementation, i.e., there are no instantiated modules.

– In this example, fifteen and altFifteen have the same logic function.

• Part-select of a vector
– A selected range of bits from the entire vector is used in the operation.

value[1:0] ← value[3:0]

SoC Research Lab.Hankuk University of Foreign Studies 25

Module Hierarchy

• D-type negative edge-triggered flip-flop module

module dEdgeFF (q, clock, data);

output q;

reg q;

input clock, data;

initial

#10 q = 0;

always

@(negedge clock) q = #10 data;

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 26

Module Hierarchy

• Registers
– A register named q drives output q.

– Register q directly models the flip-flop’s storage bit.

– When simulated, q is initialized to be zero as specified in the initial
statement.

• The always statement
– Basis for modeling sequential behavior

– Essentially a while (true) statement

– Includes one or more procedural statements that are repeatedly executed.

– The procedural statements within the always statement execute much like
a software program.

SoC Research Lab.Hankuk University of Foreign Studies 27

Module Hierarchy

• @(negedge clock) q = #10 data;
– When there is a negative edge on the clock input, then the value of the

data input will be copied and, after 10 time units, register q will be loaded
with that copied value.

– When q is loaded, it is loaded with the value that data had before the delay
started.

• Behavioral descriptions
– Capture all of the functionality of the module.

– Leave the actual logical implementation open to the designer.

SoC Research Lab.Hankuk University of Foreign Studies 28

Module Hierarchy

• Clock generator module

module m555 (clock);

output clock;

reg clock;

initial

#5 clock = 1;

always

#50 clock = ~clock;

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 29

Module Hierarchy

• Clock generator module
– The clock is initialized to be one after 5 time units have passed.

– After the first 50 time units have passed, the always statement will be
scheduled to execute and change its value.

– Because clock will change value every 50 time units, we have created a
clock with a period of 100 time units.

x

50 1000

clock

5

SoC Research Lab.Hankuk University of Foreign Studies 30

Module Hierarchy

• Two different delay mechanisms
#50 clock = ~clock;

q = #10 data;

– The first statement waits for 50 time units and loads clock with its
complement at that time.

– The second statement makes an internal copy of the current value of data,
waits 10 time units, and then loads q with that internal copy.

• The timescale compiler directive for real time units
`timescale 1ns / 100ps

– Used to attach units (1ns) and a precision (100ps) for rounding to the time
numbers.

SoC Research Lab.Hankuk University of Foreign Studies 31

Module Hierarchy

• Top-level module

module board;

wire [3:0] count;

wire clock, f, af;

m16 counter (count, clock, f, af);

m555 clockGen (clock);

always @(posedge clock)

$display ($time,,, “count = %d, f = %d, af = %d”, count, f, af);

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 32

Module Hierarchy

• Top-level view with internal connections

board

m555m16

d c b a

count f af clock

SoC Research Lab.Hankuk University of Foreign Studies 33

Module Hierarchy

• The display statement
– Similar to a print statement in a programming language.

– %d represents a printing control for an unsigned decimal integer.

– The ,,, put extra spaces between the display of the time and the quoted
string.

– In combination with the always statement, the printout in this example
will display the values at the positive edge of the clock.

SoC Research Lab.Hankuk University of Foreign Studies 34

Module Hierarchy

• Simulation trace

5 count = x, f = x, af = x

100 count = 1, f = 0, af = 0

200 count = 2, f = 0, af = 0

300 count = 3, f = 0, af = 0

400 count = 4, f = 0, af = 0

500 count = 5, f = 0, af = 0

600 count = 6, f = 0, af = 0

700 count = 7, f = 0, af = 0

800 count = 8, f = 0, af = 0

900 count = 9, f = 0, af = 0

SoC Research Lab.Hankuk University of Foreign Studies 35

Module Hierarchy

1000 count = 10, f = 0, af = 0

1100 count = 11, f = 0, af = 0

1200 count = 12, f = 0, af = 0

1300 count = 13, f = 0, af = 0

1400 count = 14, f = 0, af = 0

1500 count = 15, f = 1, af = 1

1600 count = 0, f = 0, af = 0

1700 count = 1, f = 0, af = 0

1800 count = 2, f = 0, af = 0

1900 count = 3, f = 0, af = 0

SoC Research Lab.Hankuk University of Foreign Studies 36

Behavioral Modeling

• Behavioral model
– An abstraction of how the module works

– The outputs of the module are described in terms of its inputs.

– No effort is made to describe how the module is implemented in terms of
logic gates.

– Useful early in the design process, when a designer is more concerned
with simulating the system’s intended behavior to understand its gross
performance characteristics with little regard to its final implementation.

– Later, structural models with accurate detail of the final implementation
are substituted and resimulated to demonstrate functional and timing
correctness.

SoC Research Lab.Hankuk University of Foreign Studies 37

Behavioral Modeling

• Counter module described with behavioral statements

module m16Behav (value, clock, fifteen, altFifteen);

output [3:0] value;

reg [3:0] value;

output fifteen, altFifteen;

reg fifteen, altFifteen;

input clock;

initial

value = 0;

always

SoC Research Lab.Hankuk University of Foreign Studies 38

Behavioral Modeling

begin

@(negedge clock) #10 value = value + 1;

if (value = = 15)

begin

altFifteen = 1; fifteen = 1;

end

else

begin

altFifteen = 0; fifteen = 0;

end

end

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 39

Behavioral Modeling

• Registers
– The declaration of the registers and outputs of the same name implicitly

connect the outputs of the registers to the ports.

– In behavioral descriptions, the procedural statements require the use of
registers (or variables in software programming) to store the values.

– The structural version of m16 did not use registers, rather it implicitly
connected the output drivers in the instantiated flip-flops to the output port
with a wire.

SoC Research Lab.Hankuk University of Foreign Studies 40

Behavioral Modeling

• Constant numbers
– Can be specified in decimal, hexadecimal, octal, or binary.

– May optionally start with a + or -.

– Can be given in one of two forms.

– The first form

An unsized decimal number specified using the digits from the
sequence 0 to 9

Verilog calculates a size for use in an expression.

SoC Research Lab.Hankuk University of Foreign Studies 41

Behavioral Modeling

• Constant numbers
– The second form specifies the size of the constant and takes the form:

ss…s’fnn…n

ss…s : the size in bits (Specified as a decimal number.)

f : the base format (d, h, o, b or D, H, O, B)

nn…n : the value (For hexadecimal, a ~ f or A ~ F used.)

x and z values may be given in all but the decimal base.

In hexadecimal, an x or z would represent 4 bits, in octal, 3 bits.

Normally, zeros are padded on the left if nn…n < ss…s.

The first digit of nn…n is x or z, then x or z is padded on the left.

An underline character may be inserted to improve readability, which
must not be the first character (e.g., 12’b0x0x_1101_0zx1).

SoC Research Lab.Hankuk University of Foreign Studies 42

Behavioral Modeling

• Constant numbers
– The statement in the example

altFifteen = 0;

could be written more exactly as

altFifteen = 1’b0;

meaning that one-bit operand with value zero specified in binary is loaded
into register altFifteen.

– The issue of whether to use one form versus another is a matter of
readability and exactness.

SoC Research Lab.Hankuk University of Foreign Studies 43

Behavioral Modeling

• Mixing structure and behavior
– The natural evolution of a digital system is from abstract behavior to

detailed, implementable structure.

– Along the design path, the design will be represented at times by a mixture
of behavioral and structural models.

Not all modules of a design will be designed down to the detailed
structural level at the same time.

Part of a design may make use of off-the-shelf (pre-designed)
hardware.

SoC Research Lab.Hankuk University of Foreign Studies 44

Fibonacci Number Generator Example

• Top-level view

top

ng
flag

numProduced

ready

fng

numConsumed

number numberOut

SoC Research Lab.Hankuk University of Foreign Studies 45

Fibonacci Number Generator Example

• Top-level module

module top ();

wire flag, numProduced, numConsumed;

wire [15:0] number, numberOut;

nandLatch ready (flag, , numConsumed, numProduced);

numberGen ng (number, numProduced, flag);

fibNumberGen fng (number, flag, numConsumed, numberOut);

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 46

Fibonacci Number Generator Example

• Operations
– The seed-number generator module (ng) produces a number n and passes

it onto the Fibonacci number generator module (fng).

– The Fibonacci number generator module (fng) calculates the n-th
Fibonacci number.

– The latch module (ready) is provided for the two modules to signal when
to pass another number.

– The behavioral descriptions in ng and fng execute concurrently and pass
information when the latch output indicates that previous data has been
consumed and new valid data is ready.

– The latch acts as a data-valid signal for a single element queue between
producer and consumer modules.

SoC Research Lab.Hankuk University of Foreign Studies 47

Fibonacci Number Generator Example

• The NAND latch module

module nandLatch (q, qBar, set, reset);

output q, qBar;

input set, reset;

nand #2

(q, qBar, set),

(qBar, q, reset);

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 48

Fibonacci Number Generator Example

• Instance names
– Instances of primitive gates, such as NAND and NOR, need not be

individually named.

– Instances of modules must be individually named.

• Unconnected ports
nandLatch ready (flag, , numConsumed, numProduced);

↓

module nandLatch (q, qBar, set, reset);

SoC Research Lab.Hankuk University of Foreign Studies 49

Fibonacci Number Generator Example

• The seed-number generator module

module numberGen (number, numProduced, flag);

output [15:0] number;

output numProduced;

input flag;

reg [15:0] number;

reg numProduced;

SoC Research Lab.Hankuk University of Foreign Studies 50

Fibonacci Number Generator Example

initial

begin

number = 0;

numProduced = 1;

end

always

begin

wait (flag = = 1) number = number + 1;

#100 numProduced = 0;

#10 numProduced = 1;

end

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 51

Fibonacci Number Generator Example

• Operations of the seed-number generator module
– Waits for the input flag to be one.

– As soon as the input flag becomes one, the always statement can then
continue executing.

– The flag is the q output of the nandLatch which, when set, signifies that
the previous value has been received and another can be generated.

– A new seed number is generated when the input flag becomes one, and a
delay of 100 time units will occur.

– The numProduced is set to zero for 10 time units, causing the q output of
the nandLatch to be cleared to signify that a new number is available.

SoC Research Lab.Hankuk University of Foreign Studies 52

Fibonacci Number Generator Example

• The Fibonacci number generator module

module fibNumberGen (startingValue, flag, numConsumed, fibNum);

input [15:0] startingValue;

input flag;

output numConsumed;

output [15:0] fibNum;

reg numConsumed;

reg [15:0] fibNum;

reg [15:0] count, oldNum, temp;

SoC Research Lab.Hankuk University of Foreign Studies 53

Fibonacci Number Generator Example

initial

begin

numConsumed = 0;

#10 numConsumed = 1;

$monitor ($time,, “fibNum = %d, startingValue = %d”,

fibNum, startingValue);

end

always

begin

wait (flag = = 0) count = startingValue;

oldNum = 1;

SoC Research Lab.Hankuk University of Foreign Studies 54

Fibonacci Number Generator Example

numConsumed = 0;

#10 numConsumed = 1; // Signal ready for new input data

for (fibNum = 0; count != 0; count = count - 1)

begin

temp = fibNum;

fibNum = fibNum + oldNum;

oldNum = temp;

end

$display (“%d fibNum = %d”, $time, fibNum);

end

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 55

Fibonacci Number Generator Example

• Operations of the Fibonacci number generator module
– Waits for the input flag to be zero.

– The fibNumberGen module waits on a signal complementary to what the
numberGen module waits for.

– When the input flag becomes zero, a 10 time unit pulse is sent out to set
the nandLatch module and signal the numberGen module to begin
producing another new seed number.

– The n-th Fibonacci number is calculated in register fibNum by the for loop
statement.

– The fibNumberGen module needs a copy of startingValue because it is an
input and cannot be changed with a procedural statement.

SoC Research Lab.Hankuk University of Foreign Studies 56

Fibonacci Number Generator Example

• Edge-triggering versus level-sensitive mechanism
– The event control (@) statement models an edge-triggering mechanism.

@(posedge clock) number = number + 1;

– The wait statement is level sensitive.

wait (clock = = 1) number = number + 1;

SoC Research Lab.Hankuk University of Foreign Studies 57

Fibonacci Number Generator Example

• Assignment statements
– The continuous assignment statement

wire a;

assign a = b | (c & d);

or

wire a = b | (c & d);

The right-hand side of the equal sign can be thought of as a logic gate
whose output is connected to a wire a.

For any change at any time to b, c, or d, the output of the expression
will be evaluated and made to drive wire a.

May only drive nets such as a wire.

SoC Research Lab.Hankuk University of Foreign Studies 58

Fibonacci Number Generator Example

• Assignment statements
– The procedural assignment statement

oldNum = 1;

Found in initial and always statements.

Can only load values into registers or memory elements.

The loading of the value is done only when control is transferred to
the procedural statement.

Control is transferred to a procedural assignment statement in a
sequential manner, like a normal software program.

The flow of control is interrupted either by an event (@) or wait
statement.

SoC Research Lab.Hankuk University of Foreign Studies 59

Fibonacci Number Generator Example

• Wires attached to a register
reg [15:0] newValue;

wire [15:0] y = newValue;

– Wire y is connected to the output of register newValue.

– Anytime newValue is loaded procedurally with a new value, it will drive
wire y and the inputs it is connected to with that new value.

SoC Research Lab.Hankuk University of Foreign Studies 60

Testbench

• Testbench approach
– Better to separate the design’s description and the means of testing it.

– The design may be simulated and monitored through its ports, and later
synthesized using other CAD tools such as a logic synthesizer.

– If the behavior to test a design is included with the design’s module, then
it should be removed when synthesizing  an error prone process.

– Testbench approach is to have a top module within which there are two
other modules, one representing the system being designed, and the other
representing the test generator and monitor.

SoC Research Lab.Hankuk University of Foreign Studies 61

Testbench

• Top module

module testBench;

wire q, qBar, preset, clear;

design_ffNand d (q, qBar, preset, clear);

test_ffNand t (q, qBar, preset, clear);

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 62

Testbench

• Design module

module design_ffNand (q, qBar, preset, clear);

output q, qBar;

input preset, clear;

nand #1

g1 (q, qBar, preset),

g2 (qBar, q, clear);

endmodule

SoC Research Lab.Hankuk University of Foreign Studies 63

Testbench

• Test module

module test_ffNand (q, qBar, preset, clear);

input q, qBar;

output preset, clear;

reg preset, clear;

SoC Research Lab.Hankuk University of Foreign Studies 64

Simulating a Module

initial

begin

$monitor($time,,

“preset = %b clear = %b q = %b qBar = %b”,

preset, clear, q, qBar);

#10 preset = 0; clear = 1;

#10 preset = 1;

#10 clear = 0;

#10 clear = 1;

#10 $finish;

end

endmodule

