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Process

• The behavior of digital systems can be conceived as a set of 
independent, but communicating processes.

• A process can be thought of as an independent thread of control, which 
may be quite simple, involving only one repeated action, or very
complex, resembling a software program.

• A process might be implemented as a sequential state machine, as a 
microcoded controller, or as an asynchronous clearing of a register.
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Process

• The initial and always statements are the basic constructs for 
describing concurrency  concurrently active processes that will 
interact with each other.

• The always statement continuously repeats its statements, never exiting 
or stopping.

• The initial statement is similar to the always statement except that it is 
executed only once.

• Although it is possible to mix the description of behavior between the 
always and initial statements, it is more appropriate to maintain the 
separation.
– Behavior of the hardware is described in the always.

– Initialization for the simulation is specified in the initial.
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Process

• At the start of the simulation, all of the initial and always statements 
are allowed to execute.

• When the simulator executes an event statement (@), a delay statement 
(#), or a wait statement where the expression is FALSE, the execution 
of the initial or always statement is suspended until the event occurs, 
the number of time units indicated in the delay has passed, or the wait 
statement expression becomes TRUE.

• Then, execution of statements in the initial or always statement
continues.
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If-Then-Else Statement

• A divide module using an iterative subtract and shift algorithm

`define DvLen 15 // Text macro definition

`define DdLen 31

`define QLen 15

`define HiDdMin 16

module divide (ddInput, dvInput, quotient, go, done);

input [`DdLen:0] ddInput;

input [`DvLen:0] dvInput;

input go;
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If-Then-Else Statement

output [`QLen:0] quotient;

output done;

reg [`QLen:0] quotient;

reg done;

reg [`DdLen:0] dividend;

reg [`DvLen:0] divisor;

reg negDivisor, negDividend;

initial

done = 0; // If TRUE, it signifies that the quotient is valid.
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If-Then-Else Statement

always

begin

wait (go); // If TRUE, it signifies that the dvInput and ddInput are valid.

divisor = dvInput;

dividend = ddInput;

quotient = 0;

if (divisor) // If not zero, follow the normal divide algorithm.

begin

negDivisor = divisor[`DvLen]; // Assumes 2’s complement.

if (negDivisor) divisor = - divisor; // Takes the absolute value.

negDividend = dividend[`DdLen];

if (negDividend) dividend = - dividend;
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If-Then-Else Statement

repeat (`DvLen + 1) // Executes the begin-end block 16 times.

begin

quotient = quotient << 1; // Shifts left one position.

dividend = dividend << 1;

dividend[`DdLen:`HiDdMin] = // Top part-select

dividend[`DdLen:`HiDdMin] - divisor;

if (!dividend[`DdLen]) // If dividend is positive

quotient = quotient + 1;

else // If dividend is negative

dividend[`DdLen:`HiDdMin] =

dividend[`DdLen:`HiDdMin] + divisor;

end
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If-Then-Else Statement

if (negDivisor != negDividend) // If the signs are different

quotient = - quotient;

end

done = 1; // The quotient is now valid.

wait (~go);

done = 0;

end

endmodule
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If-Then-Else Statement

• Text macros
– The `define compiler directive provides a macro capability by defining a 

name and giving a constant textual value to it.

– The name may then be used in the description.

– On compilation, the text value will be substituted.

• Bit-select and part-select
– Bit-select : identifier[expression]

– Part-select : identifier[msb_expression:lsb_expression]

– The indices of the bit-select and part-select may be positive or negative.
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If-Then-Else Statement

• Relational operators
– > (greater than), >= (greater than or equal), = = (equal), != (not equal)

– In the case where x or z values are present, the comparisons are
ambiguous and considered to be FALSE by the simulator.

– 4’b110z = = 4’b110z : FALSE

• Case operators
– = = = (equal), != = (not equal)

– Can be used to specify that individual x or z bits are to take part in the 
comparison.

– 4’b110z = = = 4’b110z : TRUE
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If-Then-Else Statement

• Where does the else belong ?
– Case 1 : The else is paired with the first if.

if (expressionA)

begin

if (expressionB)

a = a + b;

end

else

q = r + s;
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If-Then-Else Statement

• Where does the else belong ?
– Case 2 : The else is paired with the second if.

if (expressionA)

if (expressionB)

a = a + b;

else

q = r + s;

– When in doubt about where the else will be attached, use begin-end pairs 
to make it clear.
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If-Then-Else Statement

• The conditional operator (?:)
– Can be used in place of the if statement when one of two values is to be 

selected for assignment.

if (negDivisor != negDividend) quotient = - quotient;

↓
qutoient = (negDivisor != negDiviend) ? - quotient : quotient;

– The conditional operator may appear in an expression that is either part of 
a procedural or continuous assignment statement.

– The if-then-else construct is a statement that may appear only in the body 
of an initial or always statement, or in a task or function.
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Loops

• The repeat loop
– The general form:

repeat (expression) statement

– The value of loop count is determined once at the beginning of the loop.

– The loop is executed the given number of times.

– It is not possible to exit the loop execution by changing the loop count 
variable.

– Example:

repeat (16)

begin

// Statements

end
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Loops

• The for loop
– The general form:

for (reg_assignment; expression; reg_assignment) statement

– The first assignment is executed once at the beginning of the loop.

– The expression is evaluated before the body of the loop to check the end.

– The second assignment is executed after the body of the loop and before 
the next check for the end of the loop.

– Example:

for (i = 16; i; i = i - 1)

begin

// Statements

end
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Loops

• The while loop
– The general form:

while (expression) statement

– The expression is evaluated and if it is TRUE, the statement is executed.

– We enter and stay in the loop while the expression is TRUE.

– Example:

i = 16;

while (i)

begin

// Statements

i = i - 1;

end
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Loops

• The while loop
– Example:

module sureDeath (inputA); // This will not work !

input inputA;

always

begin

while (inputA)

; // Wait for external variable.

// Other statements

end

endmodule



SoC Research Lab.Hankuk University  of  Foreign  Studies 18

Loops

• The while loop
– The while statement expression in this example is dependent on the value 

of inputA and the while statement is null.

– Hence, this while statement appears to have the effect of doing nothing 
until the value of inputA is TRUE.

– However, since we are waiting for an external value to change, the correct 
statement to use in this example is the wait.

• The forever loop
– The general form:

forever statement

– The forever loop loops forever.
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Loops

• The forever loop
– Example:

module microprocessor;

always

begin

powerOnInitializations;

forever

begin

fetchAndExecuteInstructions;

end

end

endmodule
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Loops

• The disable statement
– Disables or terminates any named begin-end block.

– Example:

begin : break

for (i = 0; i < n; i = i + 1)

begin : continue

if (a = = 0)

disable continue; // Proceed with i = i + 1.

if (a = = b)

disable break; // Exit for loop.

end

end
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Multi-Way Branching

• The Mark-1 processor with the if-else-if statement

module mark1;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

always

begin

ir = m[pc]; // Fetch an instruction.
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Multi-Way Branching

// Decoding and executing

if (ir[15:13] = = 3’b000) pc = m[ir[12:0]];

else if (ir[15:13] = = 3’b001) pc = pc + m[ir[12:0]];

else if (ir[15:13] = = 3’b010) acc = -m[ir[12:0]];

else if (ir[15:13] = = 3’b011) m[ir[12:0]] = acc;

else if ((ir[15:13] = = 3’b101) || (ir[15:13] = = 3’b100))

acc = acc - m[ir[12:0]];

else if (ir[15:13] = = 3’b110)

if (acc < 0) pc = pc + 1;

#1 pc = pc + 1; // Increment program counter and time.

end

endmodule
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Multi-Way Branching

• The Mark-1 processor with the case statement

module mark1Case;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

always

begin

ir = m[pc]; // Fetch an instruction.
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Multi-Way Branching

case (ir[15:13]) // Decoding and executing

3’b000 : pc = m[ir[12:0]];

3’b001 : pc = pc + m[ir[12:0]];

3’b010 : acc = -m[ir[12:0]];

3’b011 : m[ir[12:0]] = acc;

3’b100,

3’b101 : acc = acc - m[ir[12:0]];

3’b110 : if (acc < 0) pc = pc + 1;

endcase

#1 pc = pc + 1; // Increment program counter and time.

end

endmodule
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Multi-Way Branching

• Comparison of case and if-else-if
– Since all of the expressions were compared with one controlling 

expression, the case is sometimes more compact.

– The conditional expressions in the if-else-if construct are more general.

– The comparison for the case is done using 4-valued logic and will succeed 
only when each bit matches exactly w.r.t. the values 0, 1, x, and z.

– In contrast, if statement expressions involving x or z values may result in 
x or z value which will be interpreted as FALSE (unless case equality is 
used).
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Multi-Way Branching

• The case statement example with x and z values

reg ready;

// Other statements

case (ready)

1’bz : $display (“ready is high impedance”);

1’bx : $display (“ready is unknown”);

default : $display (“ready is %b”, ready);

endcase
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Multi-Way Branching

• The casez and casex statements
– Casez allows for z values to be treated as don’t care values.

– Casex allows for both z and x values to be treated as don’t care values.

– Example:

module decode;

reg [7:0] r, mask;

always

begin

// Other statements

mask = 8’bx0x0x0x0;

casex (r ^ mask)
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Multi-Way Branching

8’b001100xx : statement1;

8’b1100xx00 : statement2;

8’b00xx0011 : statement3;

8’bxx001100 : statement4;

endcase

end

endmodule

r = 8’b01100110

→ r ^ mask = 8`bx1x0x1x0

→ Match 8`b1100xx00 and 8`bxx001100.

→ Statement2 will be executed because it was found first.
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Functions and Tasks

• Modules versus functions and tasks
– Functions and tasks are the constructs analogous to software functions and 

procedures that allow for the behavioral description of a module to be 
broken into more-manageable parts.

– Modules break a design up into more manageable parts.

– The use of modules implies that there are structural boundaries being 
described.
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Functions and Tasks

• Why functions and tasks are useful ?
– Allow often-used behavioral sequences to be written once and called when 

needed.

– Allow for a cleaner writing style  instead of long sequences of 
behavioral statements, the sequences can be broken into more readable 
pieces, regardless of whether they are called one or many times.

– Allow for data to be hidden from other parts of the design.
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Functions and Tasks

• Comparison of functions and tasks
– Enabling (calling)

Because a task call is a separate procedural statement, it cannot be 
called from a continuous assignment statement.

Because a function call is an operand in an expression, it is called 
from within the expression and returns a value used in the expression.

Functions may be called from within procedural and continuous 
assignment statements.

– Inputs and outputs

A task can have zero or more arguments of any type.

A function has at least one input, but does not have inouts or outputs.
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Functions and Tasks

• Comparison of functions and tasks
– Timing and event controls (#, @, and wait)

A task can contain timing and event control statements.

Functions may not contain these statements.

– Enabling other tasks and functions

A task may enable other tasks and functions.

A function can enable other functions but not other tasks.

– Values returned

A task does not return a value, but values written into its inout or 
output ports are copied back at the end of the task execution.

A function returns a single value, and the value to be returned is 
assigned to the function identifier within the function.
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Functions and Tasks

• The Mark-1 processor with a multiply instruction

module mark1Mult;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

always

begin : executeInstructions

ir = m[pc]; // Fetch an instruction.

case (ir[15:13]) // Decoding and executing
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Functions and Tasks

3’b000 : pc = m[ir[12:0]];

3’b001 : pc = pc + m[ir[12:0]];

3’b010 : acc = -m[ir[12:0]];

3’b011 : m[ir[12:0]] = acc;

3’b100,

3’b101 : acc = acc - m[ir[12:0]];

3’b110 : if (acc < 0) pc = pc + 1;

3’b111 : acc = acc * m[ir[12:0]]; // Multiply instruction added.

endcase

#1 pc = pc + 1; // Increment program counter and time.

end

endmodule
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Functions and Tasks

• The Mark-1 processor with a task

module mark1Task;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

always

begin : executeInstructions

ir = m[pc]; // Fetch an instruction.
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Functions and Tasks

case (ir[15:13]) // Decoding and executing

3’b000 : pc = m[ir[12:0]];

3’b001 : pc = pc + m[ir[12:0]];

3’b010 : acc = -m[ir[12:0]];

3’b011 : m[ir[12:0]] = acc;

3’b100,

3’b101 : acc = acc - m[ir[12:0]];

3’b110 : if (acc < 0) pc = pc + 1;

3’b111 : multiply (acc, m[ir[12:0]]); // Task call

endcase

#1 pc = pc + 1; // Increment program counter and time.

end
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Functions and Tasks

task multiply;

inout [31:0] a;

input [31:0] b;

begin : serialMult

reg [15:0] mcnd, mpy; // Multiplicand and multiplier

reg [31:0] prod; // Product

mpy = b[15:0];  // Part-select on b to load low-order 16 bits into mpy

mcnd = a[15:0]; // Part-select on a to load low-order 16 bits into mcnd

prod = 0;
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Functions and Tasks

repeat (16)

begin

if (mpy[0]) // If the low-order bit of mpy is one, concatenate.

prod = prod + {mcnd, 16`h0000};

prod = prod >> 1; // prod shifted right one position

mpy = mpy >> 1;  // mpy shifted right one position

end

a = prod;

end

endtask

endmodule



SoC Research Lab.Hankuk University  of  Foreign  Studies 39

Functions and Tasks

• Parameters in tasks
– The input, output, and inout names declared in tasks are local variables, 

whose scope is the task-endtask block.

– When a task is called, the internal variables declared as inputs or inouts 
receive copies of the values named as the calling site.

– When the execution of the task is done, all of the variables declared as 
inouts or outputs are copied back to the variables listed at the call site.

– In this example:

When multiply is called, acc is copied into a, the value read from 
memory is loaded into b, and the task proceeds.

When the task is ready to return, prod is loaded into a.

On return, a is then copied back into acc.
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Functions and Tasks

• The Mark-1 processor with a function

module mark1Fun;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

always

begin : executeInstructions

ir = m[pc]; // Fetch an instruction.
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Functions and Tasks

case (ir[15:13]) // Decoding and executing

3’b000 : pc = m[ir[12:0]];

3’b001 : pc = pc + m[ir[12:0]];

3’b010 : acc = -m[ir[12:0]];

3’b011 : m[ir[12:0]] = acc;

3’b100,

3’b101 : acc = acc - m[ir[12:0]];

3’b110 : if (acc < 0) pc = pc + 1;

3’b111 : acc = multiply (acc, m[ir[12:0]]); // Function call

endcase

#1 pc = pc + 1; // Increment program counter and time.

end
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Functions and Tasks

function [31:0] multiply;

input [31:0] a;

input [31:0] b;

begin : serialMult

reg [15:0] mcnd, mpy; // Multiplicand and multiplier

mpy = b[15:0];  // Part-select on b to load low-order 16 bits into mpy

mcnd = a[15:0]; // Part-select on a to load low-order 16 bits into mcnd

mulitply = 0;
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Functions and Tasks

repeat (16)

begin

if (mpy[0]) // If the low-order bit of mpy is one, concatenate.

multiply = mulitply + {mcnd, 16`h0000};

multiply = multiply >> 1; // multiply shifted right one position

mpy = mpy >> 1;  // mpy shifted right one position

end

end

endfunction

endmodule
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Functions and Tasks

• The Mark-1 processor with a separate module

module mark1Mod;

reg [31:0] m [0:8191]; // 8192 x 32 bit memory

reg [12:0] pc; // 13-bit program counter

reg [31:0] acc; // 32-bit accumulator

reg [15:0] ir; // 16-bit instruction register

reg [31:0] mcnd;

reg go;

wire [31:0] prod;

wire done;
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Functions and Tasks

multiply mul (prod, acc, mcnd, go, done);  // Module instantiation

always

begin : executeInstructions

go = 0;

ir = m[pc]; // Fetch an instruction.

case (ir[15:13]) // Decoding and executing

3’b000 : pc = m[ir[12:0]];

3’b001 : pc = pc + m[ir[12:0]];

3’b010 : acc = -m[ir[12:0]];

3’b011 : m[ir[12:0]] = acc;
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Functions and Tasks

3’b100,

3’b101 : acc = acc - m[ir[12:0]];

3’b110 : if (acc < 0) pc = pc + 1;

3’b111 : // A handshaking protocol using go and done

begin

wait (~done) mcnd = m[ir[12:0]]; go = 1;

wait (done); acc = prod;

end

endcase

#1 pc = pc + 1; // Increment program counter and time.

end

endmodule
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Functions and Tasks

module multiply (prod, mpy, mcnd, go, done);

output [31:0] prod;

input [31:0] mpy, mcnd;

input go;

output done;

reg [31:0] prod;

reg done;

reg [15:0] myMpy;

always

begin
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Functions and Tasks

done = 0; wait (go);

myMpy = mpy[15:0];

prod = 0;

repeat (16)

begin

if (myMpy[0]) prod = prod + {mcnd, 16`h0000};

prod = prod >> 1;

myMpy = myMpy >> 1;

end

done = 1; wait (~go);

end

endmodule
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Rules of Scope

• Verilog allows for identifiers to be defined within four entities:
– Modules

– Tasks

– Functions

– Named blocks

• Range of description (local scope) over which the identifier is known:
– Module-endmodule pairs

– Task-endtask pairs

– Function-endfunction pairs

– Begin:name-end pairs
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Rules of Scope

• Forward referencing
– Forward referenced:

Identifiers for modules, tasks, functions, and named begin-end blocks 
are allowed to be forward referencing and thus may be used before 
they have been defined.

– Not forward referenced:

Forward referencing is not allowed with register and net accesses.

They must be defined before they are used.

Typically, they are defined at the start of the local scope.

An exception is that output nets of gate primitives can be declared 
implicitly.


