Process

 Thebehavior of digital systems can be conceived as a set of
Independent, but communicating processes.

» A process can be thought of as an independent thread of control, which
may be quite smple, involving only one repeated action, or very
complex, resembling a software program.

» A process might be implemented as a sequential state machine, asa
microcoded controller, or as an asynchronous clearing of aregister.
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S
Process

 Theinitial and always statements are the basic constructs for

describing concurrency [ concurrently active processes that will
Interact with each other.

* The aways statement continuously repeats its statements, never exiting
or stopping.

 Theinitial statement issimilar to the always statement except that it is
executed only once.

» Although it is possible to mix the description of behavior between the
aways and initial statements, it is more appropriate to maintain the
separation.

— Behavior of the hardware is described in the always.

— Jnitialization for the simulation is specified in theinitial.
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Process

o Atthedtart of the ssmulation, al of theinitial and always statements
are allowed to execute.

* When the ssimulator executes an event statement (@), adelay statement
(#), or await statement where the expression is FAL SE, the execution
of theinitial or always statement is suspended until the event occurs,
the number of time unitsindicated in the delay has passed, or the wait
statement expression becomes TRUE.

* Then, execution of statementsin theinitial or always statement
continues.
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|f-Then-Else Statement

» A divide module using an iterative subtract and shift algorithm

“define DvLen 15 // Text macro definition
“define DdLen 31

“define QLen 15

“define HIiDdMin 16

module divide (ddinput, dvinput, quotient, go, done);

input [ DdLen:Q] ddinput;
input [ DvLen:(] dvinput;
input go;
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|f-Then-Else Statement

output [ QLen:0] quotient;

output done;

reg [ QLen:0] guotient;

reg done;

reg [ DdLen:0] dividend;

reg [ DvLen:0] divisor;

reg negDivisor, negDividend,;
initial

done=0; // If TRUE, it signifies that the quotient is valid.
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|f-Then-Else Statement

aways
begin
wait (go); // If TRUE, it signifies that the dvinput and ddInput are valid.
divisor = dvinput;
dividend = ddinput;
guotient = O;
if (divisor) /I 1f not zero, follow the normal divide agorithm.
begin
negDivisor = divisor[ DvLen]; // Assumes 2's complement.
If (negDivisor) divisor = - divisor; // Takes the absolute value.
negDividend = dividend[ DdLen];
if (negDividend) dividend = - dividend;
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|f-Then-Else Statement

repeat ((DvLen + 1) // Executes the begin-end block 16 times.

begin
guotient = quotient << 1, // Shifts |eft one position.
dividend = dividend << 1;
dividend[ DdLen: HiDdMin] =// Top part-select
dividend[ DdLen: HiDdMin] - divisor;
if ("dividend[ DdLen]) // If dividend is positive
guotient = quotient + 1;
else// If dividend is negative
dividend[ DdLen: HiDdMin] =
dividend[ DdLen: HiDdMin] + divisor;
end
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|f-Then-Else Statement

if (negDivisor = negDividend) // If the signs are different

guotient = - quotient;
end
done =1, // The quotient is now valid.
wait (~go);
done=0;
end
endmodule
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|f-Then-Else Statement

e Text macros

— The "define compiler directive provides a macro capability by defining a
name and giving a constant textual valueto it.

— The name may then be used in the description.

— On compilation, the text value will be substituted.

o Bit-select and part-select
— Bit-select : identifier[expression]
— Part-select : identifierfmsb_expression:Ish_expression]
— Theindices of the bit-select and part-select may be positive or negative.
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|f-Then-Else Statement

» Relational operators
— > (greater than), >= (greater than or equal), = = (equal), != (not equal)
— Inthe case where x or z values are present, the comparisons are
ambiguous and considered to be FAL SE by the ssmulator.

— 4'p110z ==4'b110z : FALSE

o (Case operators

=== (equal), != = (not equal)
— Can be used to specify that individual x or z bits are to take part in the
comparison.

— 4'p110z===4'b110z: TRUE

I
-
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|f-Then-Else Statement

* Where doesthe else belong ?
— Casel: Theedseispared with thefirst if.

If (expressionA)

begin
If (expressionB)
a=a+b;
end
else

q=r+s,
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|f-Then-Else Statement

* Where doesthe else belong ?
— Case2: Theelseis paired with the second if.

If (expressionA)
if (expressionB)
a=a+hb;
else

q=r+s

— When in doubt about where the else will be attached, use begin-end pairs
to make it clear.
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|f-Then-Else Statement

* The conditional operator (?:)

— Can be used in place of the if statement when one of two valuesisto be
selected for assignment.

If (negDivisor = negDividend) quotient = - quotient;
!
gutoient = (negDivisor !'= negDiviend) ? - quotient : quotient;

— The conditional operator may appear in an expression that is either part of
aprocedural or continuous assignment statement.

— Theif-then-else construct is a statement that may appear only in the body
of aninitial or aways statement, or in atask or function.

f_'; Hankuk University of Foreign Studies SoC Research Lab. 13



L oops

 Therepeat loop
— The general form:
repeat (expression) statement
— The value of loop count is determined once at the beginning of the loop.
— Theloop is executed the given number of times.

— Itisnot possible to exit the loop execution by changing the loop count
variable.

— Example:
repeat (16)
begin
/] Statements
end

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 14



L oops

 Thefor loop

— The general form:
for (reg_assignment; expression; reg_assignment) statement
— Thefirst assignment is executed once at the beginning of the loop.
— The expression is evaluated before the body of the loop to check the end.

— The second assignment is executed after the body of the loop and before
the next check for the end of the loop.

— Example:
for(i=16;i;i=1-1)
begin

/] Statements
end .
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L oops

 Thewnhileloop
— The general form:
while (expression) statement
— Theexpression isevaluated and if it is TRUE, the statement is executed.

— We enter and stay in the loop while the expression is TRUE.

— Example:
| = 16;
while (i)
begin
Il Statements
l=i-1
R e —
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L oops

 Thewnhileloop

— Example:
module sureDeath (inputA); // Thiswill not work !
input INPUtA;
aways
begin

while (inputA)
; [/ Walit for external variable.
I/ Other statements
end

JM—
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L oops

 Thewnhileloop

— The while statement expression in this example is dependent on the value
of inputA and the while statement is null.

— Hence, this while statement appears to have the effect of doing nothing
until the value of inputA is TRUE.

— However, since we are waiting for an external value to change, the correct
statement to use in this example is the wait.

 Theforever loop
— The general form:
forever statement

— Theforever loop loops forever.

I
-
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L oops

 Theforever loop

— Example:

module microprocessor;

aways

begin
powerOnlnitializations;
forever
begin

fetchAndExecutel nstructions;

end

end

—tRAmOAUE
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L oops

 Thedisable statement

— Disables or terminates any named begin-end block.

— Example;
begin : break
for(i=0;i<n;i=i+1)
begin : continue
if (@==0)
disable continue; // Proceed withi =i + 1.
if (@==D)
disable break; // Exit for loop.
end
——
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Multi-Way Branching

 The Mark-1 processor with the if-else-if statement

module mark1;

reg [31:0] m [0:8191]; /1 8192 x 32 bit memory
reg [12:0] PpC; // 13-bit program counter
reg [31:0] acc; I/ 32-bit accumulator

reg [15:0] ir; I/ 16-bit instruction register
aways

begin

ir = m[pc]; // Fetch an instruction.
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Multi-Way Branching

// Decoding and executing
if (ir[15:13] = =3'b000) pc = m[ir[12:0]];
elseif (ir[15:13] = = 3'b001) pc = pc + m[ir[12:0]];
elseif (ir[15:13] = = 3'b010) acc = -m[ir[12:0]];
elseif (ir[15:13] = = 3'b011) m[ir[12:0]] = acc;
elseif ((ir[15:13] ==3'b101) || (ir[15:13] = = 3'b100))
acc = acc - m[ir[12:0]];
elseif (irf[15:13] = = 3'b110)
if (acc<0) pc=pc+ 1,
#1 pc = pc + 1; // Increment program counter and time.
end

endmodule
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Multi-Way Branching

 The Mark-1 processor with the case statement

module mark1Case;

reg [31:0] m [0:8191]; /1 8192 x 32 bit memory
reg [12:0] PpC; // 13-bit program counter
reg [31:0] acc; I/ 32-bit accumulator

reg [15:0] ir; I/ 16-bit instruction register
aways

begin

ir = m[pc]; // Fetch an instruction.
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Multi-Way Branching

case (ir[15:13]) // Decoding and executing
3'b000 : pc = m[ir[12:0]];
3'b001 : pc = pc + m[ir[12:0]];
3'b010 : acc = -m[ir[12:0]];
3'b011 : m[ir[12:0]] = acc;
3'b100,
3'b101 : acc = acc - m[ir[12:0]];
3'b110: if (acc < 0) pc = pc + 1;
endcase
#1 pc = pc + 1; // Increment program counter and time.
end
endmodule
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Multi-Way Branching

e Comparison of case and if-else-if

Since all of the expressions were compared with one controlling
expression, the case is sometimes more compact.

The conditional expressionsin the if-else-if construct are more general.

The comparison for the case is done using 4-valued logic and will succeed
only when each bit matches exactly w.r.t. thevalues0, 1, x, and z.

In contrast, if statement expressions involving x or z values may result in
x or z value which will be interpreted as FAL SE (unless case equality is
used).
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Multi-Way Branching

* The case statement example with x and z values

reg ready;

I/ Other statements

case (ready)
1'bz : $display (“ready is high impedance’);
1’ bx : $display (“ready is unknown”);
default : $display (“ready is %b”, ready);

endcase

’:_[:J Hankuk University of Foreign Studies SoC Research Lab. 26



Multi-Way Branching

 The casez and casex statements

— Casez allowsfor z values to be treated as don’t care values.
— Casex allows for both z and x values to be treated as don't care values.
— Example:

modul e decode;

reg [7:0] r, mask;

aways
begin
I/ Other statements
mask = 8" bx0x0x0x0;
e CASEX (.7 MESK)
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Multi-Way Branching

8 b001100xx : statementl,;
8'b1100xx00 : statement2;
8 b00xx0011 : statement3;
8 bxx001100 : statement4;
endcase
end

endmodule

r = 8'b01100110
— '~ mask = 8 bx1x0x1x0
— Match 8'h1100xx00 and 8 bxx001100.

N Statemﬂtz will be executed because it was found first.
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Functions and Tasks

 Modules versus functions and tasks

— Functions and tasks are the constructs anal ogous to software functions and
procedures that alow for the behavioral description of a module to be
broken into more-manageabl e parts.

— Modules break a design up into more manageable parts.

— The use of modules implies that there are structural boundaries being
described.
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Functions and Tasks

 Why functions and tasks are useful ?

— Allow often-used behavioral sequencesto be written once and called when
needed.

— Allow for acleaner writing style [ instead of long sequences of
behaviora statements, the sequences can be broken into more readable
pieces, regardless of whether they are called one or many times.

— Allow for datato be hidden from other parts of the design.

L
-
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Functions and Tasks

o Comparison of functions and tasks
— Enabling (calling)

» Because atask call is a separate procedural statement, it cannot be
called from a continuous assignment statement.

» Because afunction call isan operand in an expression, it iscalled
from within the expression and returns a value used in the expression.

» Functions may be called from within procedural and continuous
assignment statements.

— Inputs and outputs
» A task can have zero or more arguments of any type.

> A function has at least one input, but does not have inouts or outputs.
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Functions and Tasks

o Comparison of functions and tasks

— Timing and event controls (#, @, and wait)
» A task can contain timing and event control statements.
» Functions may not contain these statements.
— Enabling other tasks and functions
> A task may enable other tasks and functions.
» A function can enable other functions but not other tasks.
— Values returned

» A task does not return a value, but values written into itsinout or
output ports are copied back at the end of the task execution.

» A function returns asingle value, and the value to be returned is
assigned to the function identifier within the function.
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Functions and Tasks

o The Mark-1 processor with a multiply instruction

module mark1Mult;

reg [31:0]
reg [12:0]
reg [31:0]
reg [15:0]

aways

m [0:8191];
PC;
acc;

ir:

begin : executel nstructions

// 8192 x 32 bit memory

// 13-bit program counter

I/ 32-bit accumulator

I/ 16-bit instruction register

ir = m[pc]; // Fetch an instruction.

W@Odl ng and executi ng

"_|:J Hankuk University of Foreign Studies
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Functions and Tasks

3'b000 : pc = m[ir[12:0]];
3'b001 : pc = pc + m[ir[12:0]];
3'b010 : acc = -m[ir[12:0]];
3'b011 : m[ir[12:0]] = acc;
3'b100,
3'b101 : acc = acc - m[ir[12:0]];
3'b110: if (acc < 0) pc = pc + 1;
3'b111 : acc = acc * m[ir[12:0]]; // Multiply instruction added.
endcase
#1 pc = pc + 1; // Increment program counter and time.
end
endmodule
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Functions and Tasks

 The Mark-1 processor with atask

module mark1Task;

reg [31:0] m [0:8191]; /1 8192 x 32 bit memory
reg [12:0] PpC; // 13-bit program counter
reg [31:0] acc; I/ 32-bit accumulator

reg [15:0] ir; I/ 16-bit instruction register
aways

begin : executel nstructions

ir = m[pc]; // Fetch an instruction.
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Functions and Tasks

case (ir[15:13]) // Decoding and executing

3'b000 : pc = m[ir[12:0]];

3'b001 : pc = pc + m[ir[12:0]];

3'b010 : acc = -m[ir[12:0]];

3'b011 : m[ir[12:0]] = acc;

3 b100,

3'b101 : acc = acc - m[ir[12:0]];

3'b110:if (acc < 0) pc=pc + 1;

3'b111 : multiply (acc, m[ir[12:0]]); // Task call
endcase
#1 pc = pc + 1, // Increment program counter and time.

end
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Functions and Tasks

task multiply;
inout [31.:0] g
input [31.0] b;

begin : seriadMult
reg [15:0] mcnd, mpy; /[ Multiplicand and multiplier
reg [31:0] prod; I/ Product

mpy = b[15:0]; // Part-select on b to load low-order 16 bits into mpy
mcnd = g 15:0]; // Part-select on a to load low-order 16 bitsinto mend
prod = 0;
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Functions and Tasks

repeat (16)
begin
if (mpy[Q]) // If the low-order bit of mpy is one, concatenate.
prod = prod + {mcnd, 16 h0000} ;
prod = prod >> 1; // prod shifted right one position
mpy = mpy >> 1; // mpy shifted right one position
end
a=prod,
end
endtask

endmodule
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Functions and Tasks

e Parametersin tasks

— Theinput, output, and inout names declared in tasks are local variables,
whose scope is the task-endtask block.

— When atask is called, the internal variables declared as inputs or inouts
receive copies of the values named as the calling site.

— When the execution of the task isdone, all of the variables declared as
Inouts or outputs are copied back to the variables listed at the call site.

— Inthisexample:

» When multiply is called, acc is copied into a, the value read from
memory is loaded into b, and the task proceeds.

» When the task is ready to return, prod is loaded into a.

» On return, aisthen copied back into acc.
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Functions and Tasks

 The Mark-1 processor with afunction

module mark1Fun;

reg [31:0] m [0:8191]; /1 8192 x 32 bit memory
reg [12:0] PpC; // 13-bit program counter
reg [31:0] acc; I/ 32-bit accumulator

reg [15:0] ir; I/ 16-bit instruction register
aways

begin : executel nstructions

ir = m[pc]; // Fetch an instruction.
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Functions and Tasks

case (ir[15:13]) // Decoding and executing

3'b000 : pc = m[ir[12:0]];

3'b001 : pc = pc + m[ir[12:0]];

3'b010 : acc = -m[ir[12:0]];

3'b011 : m[ir[12:0]] = acc;

3'b100,

3'b101 : acc = acc - m[ir[12:0]];

3'b110:if (acc < 0) pc=pc + 1;

3'b111 : acc = multiply (acc, m[ir[12:0]]); // Function call
endcase
#1 pc = pc + 1, // Increment program counter and time.

end
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Functions and Tasks

function [31:0] multiply;
input [31:0] &
input [3L:0]  b;

begin : seriadMult
reg [15:0] mcnd, mpy; /[ Multiplicand and multiplier

mpy = b[15:0]; // Part-select on b to load low-order 16 bitsinto mpy
mcnd = a[15:0]; // Part-select on a to load low-order 16 bits into mend
mulitply = 0;
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Functions and Tasks

repeat (16)
begin
if (mpy[Q]) // If the low-order bit of mpy is one, concatenate.
multiply = mulitply + { mend, 16 h0000} ;
multiply = multiply >> 1; // multiply shifted right one position
mpy = mpy >> 1; // mpy shifted right one position
end
end
endfunction

endmodule
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Functions and Tasks

 The Mark-1 processor with a separate module

module mark1Mod:;

reg [31:0] m [0:8191];

reg [12:0] PpC;

reg [31:0] acc;

reg [15:0] ir;

reg [31:0] mcnd,;

reg go,

wire[31:0] prod;
AL e dODE,
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// 8192 x 32 bit memory

// 13-bit program counter

I/ 32-bit accumulator

I/ 16-bit instruction register
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Functions and Tasks

multiply mul (prod, acc, mend, go, done); // Module instantiation

aways
begin : executel nstructions
go=0;
ir = m[pc]; // Fetch an instruction.
case (ir[15:13]) // Decoding and executing
3'b000 : pc = m[ir[12:0]];
3'b001 : pc = pc + m[ir[12:0]];
3'b010 : acc = -m[ir[12:0]];
3'b011 : m[ir[12:0]] = acc;
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Functions and Tasks

3'b100,
3'b101 : acc = acc - m[ir[12:0]];
3'b110: if (acc < 0) pc = pc + 1;
3'b111 : // A handshaking protocol using go and done
begin
wait (~done) mend = m[ir[12:0]]; go = 1;
wait (done); acc = prod;
end
endcase
#1 pc = pc + 1, // Increment program counter and time.
end
endmodule
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Functions and Tasks

module multiply (prod, mpy, mend, go, done);
output [31:0] prod,;
input [31:0] mpy, mcnd;

Input go;
output done;

reg [31:0] prod;
reg done;
reg [15:0] myMpy;

aways
%__
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Functions and Tasks

done = 0; wait (go);
myMpy = mpy[15:0];
prod = 0;
repeat (16)
begin
if (myMpy[0]) prod = prod + { mend, 16 hOOOO} ;
prod = prod >> 1;
myMpy = myMpy >>1;
end
done = 1; wait (~go);
end
endmodule
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Rules of Scope

* Verilog alowsfor identifiers to be defined within four entities:
— Modules
— Tasks
— Functions
— Named blocks

» Range of description (local scope) over which the identifier is known:
— Module-endmodule pairs
— Task-endtask pairs
— Function-endfunction pairs

— Begin:name-end pairs
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Rules of Scope

» Forward referencing

— Forward referenced:

> ldentifiers for modules, tasks, functions, and named begin-end blocks
are allowed to be forward referencing and thus may be used before
they have been defined.

— Not forward referenced:
» Forward referencing is not allowed with register and net accesses.
» They must be defined before they are used.
» Typically, they are defined at the start of the local scope.

» An exception is that output nets of gate primitives can be declared
implicitly.
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