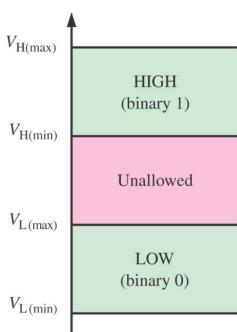

Digital Logic Circuits Fundamentals I

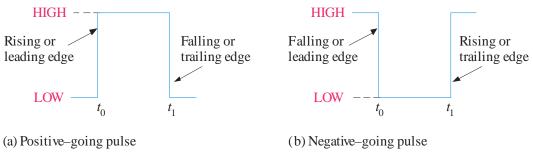
Digital and Analog Quantities

- Electronic circuits can be divided into two categories.
 - Digital Electronics : deals with <u>discrete</u> values (= <u>sampled values</u> at discrete points in time: quantization)
 - Analog Electronics : deals with continuous values
- Most natural quantities that we see are <u>analog</u> and vary continuously.
 - (Ex: time, temperature, pressure, sound, light, distance, ...)
- Digital Advantage
 - Digital data can be processed and transmitted more efficiently and reliably than analog data. Digital data has a great advantage when storage is necessary.

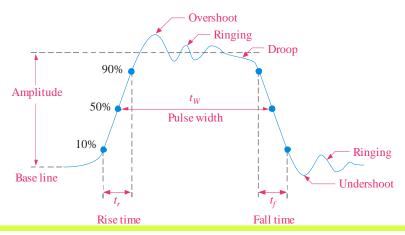

Binary Digits and Logic Levels

• Digital electronics uses circuits that have two states, which are typically represented by two different voltage levels called HIGH and LOW. The voltages represent numbers in the binary system.

• In binary, a single number is called a <u>bit</u> (for binary digit). A bit can have the value of either a 0 or a 1, depending on if the voltage is LOW or HIGH.

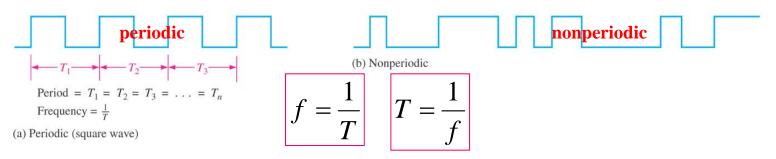

3

- In positive logic, HIGH = 1 & LOW = 0.
- Groups of bits (combinations of 1s and 0s) are called "codes". (Ex: binary code, ASCII code)
- <u>Codes</u> are used to represent numbers, letters, symbols, instructions, ..., etc.

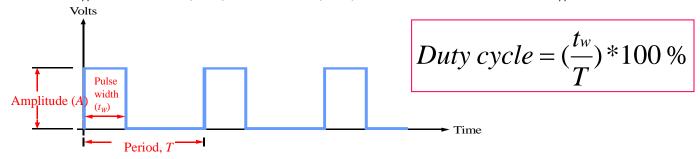


Digital Waveforms and Pulses

• Digital waveforms change between the LOW and HIGH levels. A positive going pulse is one that goes from a normally LOW logic level to a HIGH level and then back again. Digital waveforms are made up of a series of pulses.

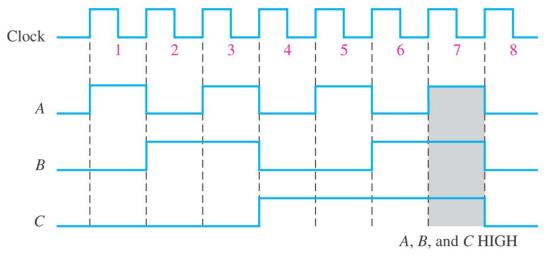


• Actual pulses are not ideal but are described by the rise time, fall time, amplitude, and other characteristics.



Periodic Pulse Waveforms

• Periodic pulse waveforms are composed of pulses that repeats in a fixed interval called the **period** (**T**). The **frequency** (*f*) is the rate it repeats and is measured in hertz (Hz).

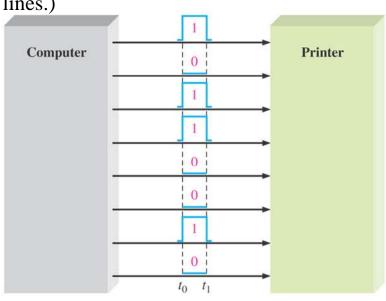

• Repetitive waveforms are described by the frequency, period, amplitude (A), pulse width (t_W) and duty cycle. Duty cycle is the ratio of t_W to T.

- The **clock** is a basic timing signal that is an example of a periodic wave.
- What is the period of a repetitive wave if f = 1 GHz? $T = \frac{1}{f} = \frac{1}{1 \text{ GHz}} = 1 n$

Timing Diagrams

• A timing diagram is a graph of digital waveforms showing the actual time relationship of two or more digital waveforms.

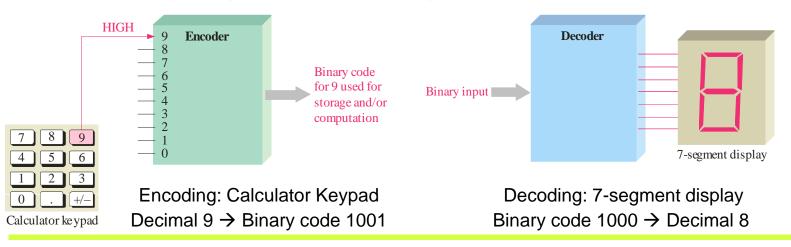
A diagram like the above can be observed directly on a logic analyzer or an digital oscilloscope.


Data Transfer

- <u>Data</u> refers to <u>groups of bits</u> (or group of codes) that convey some type of information.
- Data can be transferred in two ways:
 - <u>Serial transfer</u> (disadvantage: It takes longer time to transfer a given number of bits than with parallel transfer.)
 - **Parallel transfer** (disadvantage: It takes more lines.)

(a) Serial transfer of 8 bits of binary data from computer to modem. Interval t_0 to t_1 is first.

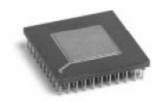
Serial Transfer



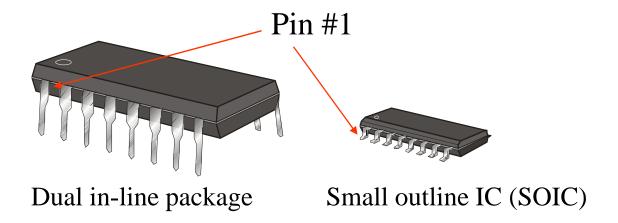
(b) Parallel transfer of 8 bits of binary data from computer to printer. The beginning time is t_0 .

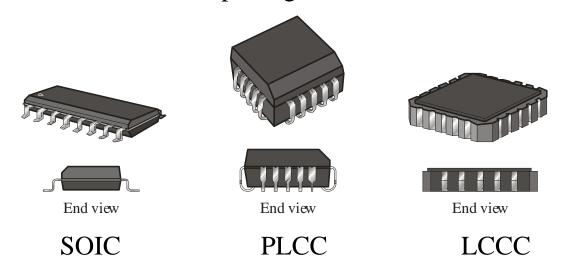
Parallel Transfer

• <u>Code Conversion Function</u>

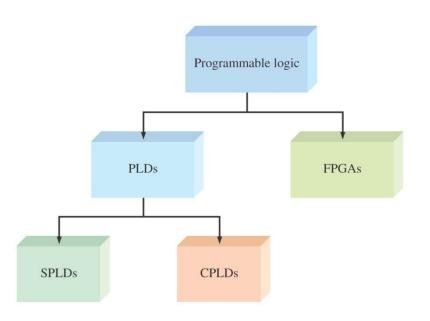

- A code is a set of bits arranged in a unique pattern and used to represent specified information.
- A code converter changes one form of coded information into another coded form. (Ex. <u>Binary code</u> → <u>Binary Coded Decimal (BCD)</u> code or <u>Gray code</u>.)
- **Encoding Function**
 - The <u>encoder converts information</u> (such as a decimal number or an alphabetic character) into some coded form.
- <u>Decoding Function</u>
 - The <u>decoder converts coded information</u> (such as a binary number) <u>into some</u> <u>non-coded form</u> (such as a decimal form).

Integrated Circuits


- A monolithic <u>Integrated Circuits (IC)</u> is an electronic circuit that is constructed entirely on a single small chip of silicon.
- Two broad categories of digital IC
 - Fixed-Function Logic Devices
 - → the logic functions are set by the manufacturer and can not be changed. (Ex: Intel CPUs, Samsung DRAMs)
 - <u>Programmable Logic</u> Devices
 - → can be programmed to perform specific logic functions by the manufacturer or by the user. (Ex: Xilinx FPGAs)
- IC Package types
 - Through hole type packages
 - : Dual in-line package (DIP)
 - Surface-mount technology (SMT) type packages
 - : Small-outline IC (SOIC)
 - : Plastic-leaded chip carrier (PLCC)
 - : Leadless-ceramic chip carrier (LCCC)
 - Contackless packages.

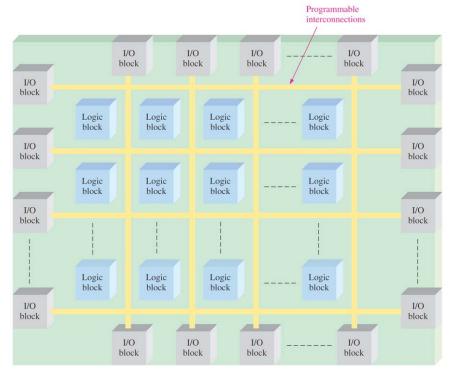


CPGA

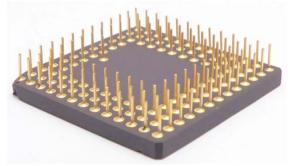


• Other surface mount packages:

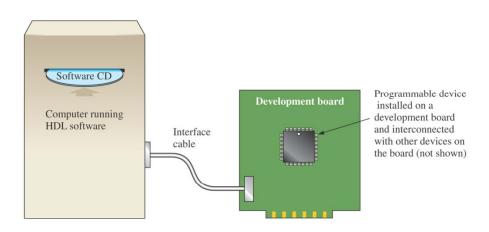
Introduction to Programmable Logic


- <u>Programmable logic devices</u> can be <u>programmed</u> to perform <u>specific logic</u> functions by the <u>manufacturer</u> or by the <u>user</u>.
- Two major categories of user-programmable logic are <u>PLD</u> and <u>FPGA</u>.
 - Programmable logic requires both hardware and software.
 - One advantage of programmable logic is that <u>designs can be readily changed</u> <u>without rewiring or replacing components</u>. Also, a <u>logic design can be</u> <u>implemented faster</u>.

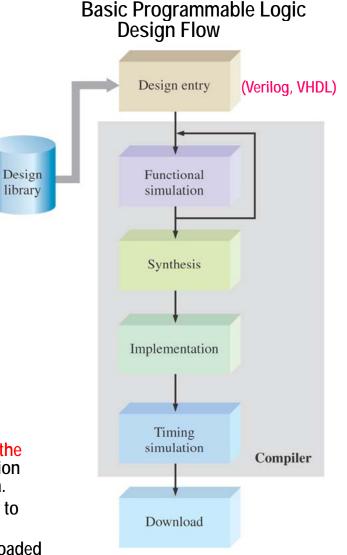

- PLD : Programmable logic device
- SPLD : Simple programmable logic device
- CPLD : Complex programmable logic device (44-160 pin packages)
- FPGA : Field-programmable gate array (>1000 pins)


FPGA

- Field Programmable Gate Array (FPGA)
 - An FPGA is generally more complex and has a much higher density.
 - The 3 basic elements in an FPGA are the <u>logic blocks</u>, the <u>programmable interconnections</u>, and the <u>input/output (I/O) blocks</u>.
 - Large FPGAs can have tens of thousands of logic blocks in addition to memory and CPUs.
 - A typical FPGA ball-grid array (BGA) package has over 1000 pins.


Basic structure of an FPGA

BGA package for FPGAs


Programming Process of PLDs and FPGAs

 The programming process requires a software development package (installed on a computer) to implement a circuit design in the programmable device (chip, installed on a development board).

Design Flow

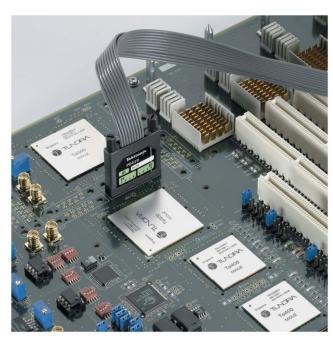
- Design entry: Describes the logic circuit function with hardware description languages such as <u>Verilog</u> or <u>VHDL</u>.
- <u>Functional simulation</u>: Confirm that the logic circuit functions as expected in functional level.
- Synthesis and Implementation: The synthesis process translates the Verilog or VHDL design into a netlist (gate level). The implementation process is called 'place and route' and generates a bit-stream data.
- <u>Timing Simulation</u>: Confirm design errors or timing problems due to propagation delays.
- <u>Download</u>: After generating the bitstream data, it has to be downloaded to the device chip to implement the software design in hardware.

13

Test and Measurement Instruments

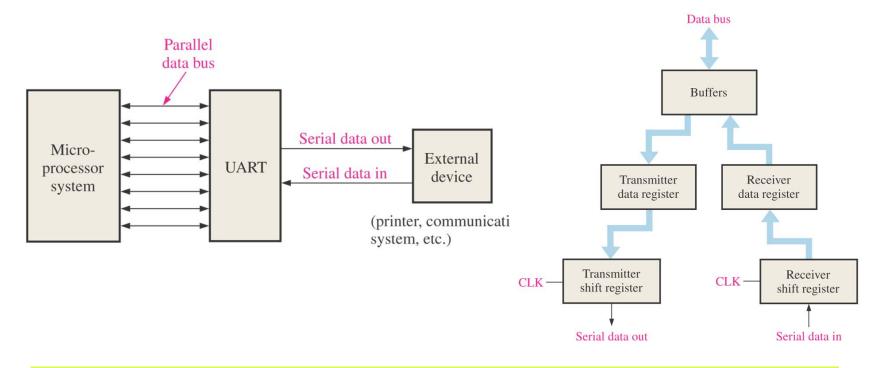
- Analog Oscilloscope
- Digital Oscilloscope
- Logic Analyzer
 - Large # of signals (over 100) can be measured simultaneously.
- DC Power Supply
- Function Generator
- Digital Multimeter (measures voltage, current, & resistance)

Digital Oscilloscope


Probe

• Logic Analyzer

: The logic analyzer can display multiple channels of digital information or show data in tabular form.


Logic Analyzer

Multichannel logic analyzer probe

Universal Anynchronous Receiver Transmitter (UART)

- A UART (Universal Asynchronous Receiver Transmitter) includes a serial-to-parallel data converter and a parallel to serial converter.
- UARTs are commonly used in small systems where one device must communicate with another. Parallel data is converted to asynchronous serial form and transmitted.

