
Why study logic design?

O Obvious reasons
 this course is part of the CS/CompE requirements
 it is the implementation basis for all modern computing devices it is the implementation basis for all modern computing devices

 building large things from small components
 provide a model of how a computer works

 More important reasons
the inherent parallelism in hardware is often our first exposure to the inherent parallelism in hardware is often our first exposure to
parallel computation

 it offers an interesting counterpoint to software design and is
therefore
useful in furthering our understanding of computation, in general

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

What will we learn in this class?

f The language of logic design
 Boolean algebra, logic minimization, state, timing, CAD tools

 The concept of state in digital systems The concept of state in digital systems
 analogous to variables and program counters in software systems

 How to specify/simulate/compile/realize our designs How to specify/simulate/compile/realize our designs
 hardware description languages
 tools to simulate the workings of our designs
 logic compilers to synthesize the hardware blocks of our designs
 mapping onto programmable hardware
C t t ith ft d i Contrast with software design
 sequential and parallel implementations
 specify algorithm as well as computing/storage resources it will use

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

 specify algorithm as well as computing/storage resources it will use

Applications of logic design

C Conventional computer design
 CPUs, busses, peripherals

 Networking and communications Networking and communications
 phones, modems, routers

 Embedded products Embedded products
 in cars, toys, appliances, entertainment devices

 Scientific equipment
 testing, sensing, reporting

 The world of computing is much much bigger than just PCs!

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

A quick history lesson

 1850: George Boole invents Boolean algebra
l i l iti t b l maps logical propositions to symbols

 permits manipulation of logic statements using mathematics
 1938: Claude Shannon links Boolean algebra to switchesg

 his Masters’ thesis
 1945: John von Neumann develops the first stored program computer

it it hi l t t b (bi d f l) its switching elements are vacuum tubes (a big advance from relays)
 1946: ENIAC . . . The world’s first completely electronic computer

 18,000 vacuum tubes,
 several hundred multiplications per minute

 1947: Shockley, Brittain, and Bardeen invent the transistor
l t b replaces vacuum tubes

 enable integration of multiple devices into one package
 gateway to modern electronics

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

g y

What is logic design?
 What is design?

 given a specification of a problem come up with a way of solving given a specification of a problem, come up with a way of solving
it choosing appropriately from a collection of available
components

hil ti it i f i t b t while meeting some criteria for size, cost, power, beauty,
elegance, etc.

 What is logic design?What is logic design?
 determining the collection of digital logic components to perform

a specified control and/or data manipulation and/or
communication function and the interconnections between themcommunication function and the interconnections between them

 which logic components to choose? – there are many
implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)

 the design may need to be optimized and/or transformed to meet
design constraints

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

design constraints

What is digital hardware?

 Collection of devices that sense and/or control wires that carry a
di it l l (i h i l tit th t b i t t ddigital value (i.e., a physical quantity that can be interpreted
as a “0” or “1”)
 example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
 example: pair of transmission wires where a “0” or “1” is distinguished

by which wire has a higher voltage (differential)
 example: orientation of magnetization signifies a “0” or a “1” example: orientation of magnetization signifies a 0 or a 1

 Primitive digital hardware devices
 logic computation devices (sense and drive)

i b h “1” k h b “1” (AND) are two wires both “1” - make another be “1” (AND)
 is at least one of two wires “1” - make another be “1” (OR)
 is a wire “1” - then make another be “0” (NOT)

sense

driveAND

 memory devices (store)
 store a value
 recall a previously stored value

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 6sense

driveAND

What is happening now in digital design?

 Important trends in how industry does hardware design
 larger and larger designs
 shorter and shorter time to market
 cheaper and cheaper productsp p p

 Scale
 pervasive use of computer-aided design tools over hand methods
 multiple levels of design representation multiple levels of design representation

 Time
 emphasis on abstract design representations

bl th th fi d f ti t programmable rather than fixed function components
 automatic synthesis techniques
 importance of sound design methodologies

 Cost
 higher levels of integration
 use of simulation to debug designs

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

g g
 simulate and verify before you build

CSE 370: concepts/skills/abilities

f () Understanding the basics of logic design (concepts)
 Understanding sound design methodologies (concepts)

M d ifi ti th d (t) Modern specification methods (concepts)
 Familiarity with a full set of CAD tools (skills)
 Realize digital designs in an implementation technology (skills) Realize digital designs in an implementation technology (skills)
 Appreciation for the differences and similarities (abilities)

in hardware and software design

New ability: to accomplish the logic design task with the aid of computer-aided

g

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

of the advantages/disadvantages as compared to a software implementation

Computation: abstract vs. implementation

 Up to now, computation has been a mental exercise (paper,
programs)programs)

 This class is about physically implementing computation using
physical devices that use voltages to represent logical valuesp y g p g

 Basic units of computation are:
 representation: "0", "1" on a wire

set of wires (e g for binary ints)set of wires (e.g., for binary ints)
 assignment: x = y
 data operations: x + y – 5
 control:

sequential statements: A; B; C
conditionals: if x == 1 then y
loops: for (i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

 We will study how each of these are implemented in hardware

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

y p
and composed into computational structures

Switches: basic element of physical
implementations

(f Implementing a simple circuit (arrow shows action if wire
changes to “1”):

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

and turn on light bulb (Z)

Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

A
Z

and turn off light bulb (Z)

Z  A

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Z  A

Switches (cont’d)

C (

A B

 Compose switches into more complex ones (Boolean
functions):

AND Z  A and B
A B

A

OR
Z  A or B

B

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Switching networks

S Switch settings
 determine whether or not a conducting path exists to light

the light bulbthe light bulb
 To build larger computations

 use a light bulb (output of the network) to set other switches
(inputs to another network).

 Connect together switching networks
t t t l it hi t k i th i t to construct larger switching networks, i.e., there is a way to
connect outputs of one network to the inputs of the next.

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Relay networks

 A simple way to convert between conducting paths and
switch settings is to use (electro-mechanical) relays.

 What is a relay?

conducting
path composed

 What is a relay?

path composed
of switches

closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

h t fl th i f th t twhen no current flows, the spring of the contact
returns it to its normal position

What determines the switching speed of a relay network?

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

What determines the switching speed of a relay network?

Transistor networks

 Relays aren't used much anymore
 some traffic light controllers are still electro-mechanical

 Modern digital systems are designed in CMOS technology Modern digital systems are designed in CMOS technology
 MOS stands for Metal-Oxide on Semiconductor
 C is for complementary because there are both normally-open p y y p

and normally-closed switches
 MOS transistors act as voltage-controlled switches

 similar, though easier to work with than relays.

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

MOS transistors

OS MOS transistors have three terminals: drain, gate, and source
 they act as switches in the following way:

if the voltage on the gate terminal is (some amount) higher/lowerif the voltage on the gate terminal is (some amount) higher/lower
than the source terminal then a conducting path will be
established between the drain and source terminals

GG

S D

n-channel
open when voltage at G is low

p-channel
closed when voltage at G is low

S DS D

open when voltage at G is low
closes when:

voltage(G) > voltage (S) + 

closed when voltage at G is low
opens when:

voltage(G) < voltage (S) – 

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

MOS networks

X what is the
relationship

3v x y

relationship
between x and y?

Y 0 volts

0

3 volts

3 volts0v 0 volts

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Two input networks

X Y

what is the
relationship

3v

x y z1 z2

relationship
between x, y and z?

0v

Z1

x y z1 z2

0 volts0 volts

0v

X Y 3 volts 3 volts

3 volts

0 volts

0 volts

3 volts3v
3 volts

3 volts

0 volts

0 volts

3 volts3 volts

0

Z2 0 volts 0 volts

NAND NOR

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

0v

Speed of MOS networks

f f C OS ? What influences the speed of CMOS networks?
 charging and discharging of voltages on wires and gates of

transistorstransistors
 Capacitors hold charge

 capacitance is at gates of transistors and wire material
 Resistors slow movement of electrons

 resistance mostly due to transistors

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Representation of digital designs

() Physical devices (transistors, relays)
 Switches

T th t bl Truth tables
 Boolean algebra
 Gates

scope of CSE 370
 Gates
 Waveforms
 Finite state behavior Finite state behavior
 Register-transfer behavior
 Concurrent abstract specificationsp

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Digital vs. analog

C f Convenient to think of digital systems as having only
discrete, digital, input/output values

 In reality real electronic components exhibit In reality, real electronic components exhibit
continuous, analog, behavior

 Why do we make the digital abstraction anyway?
 switches operate this way
 easier to think about a small number of discrete values

 Why does it work?
d t t ll i l does not propagate small errors in values

 always resets to 0 or 1

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

Mapping from physical world to binary world

Technology State 0 State 1

Relay logic Circuit Open Circuit Closedy g p
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on

h d h dDynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble presentBubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Combinational vs. sequential digital circuits

f A simple model of a digital system is a unit with inputs and
outputs:

inputs outputssystem

 Combinational means "memory-less" Combinational means memory less
 a digital circuit is combinational if its output values

only depend on its input values

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Combinational logic symbols

C Common combinational logic systems have standard symbols
called logic gates

 Buffer, NOT

ZA

 AND, NAND

ZA

easy to implement
with CMOS transistors
(the switches we have

A
B

Z

(the switches we have
available and use most) OR, NOR

ZA

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Z
B

Sequential logic

S Sequential systems
 exhibit behaviors (output values) that depend not only

on the current input values, but also on previous input valueson the current input values, but also on previous input values
 In reality, all real circuits are sequential

 because the outputs do not change instantaneously after an
input change

 why not, and why is it then sequential?
A fundamental abstraction of digital design is to reason A fundamental abstraction of digital design is to reason
(mostly) about steady-state behaviors
 look at the outputs only after sufficient time has elapsed for the p y p

system to make its required changes and settle down

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Synchronous sequential digital systems

O f Outputs of a combinational circuit depend only on current inputs
 after sufficient time has elapsed

 Sequential circuits have memory Sequential circuits have memory
 even after waiting for the transient activity to finish

 The steady-state abstraction is so useful that most designers The steady state abstraction is so useful that most designers
use a form of it when constructing sequential circuits:
 the memory of a system is represented as its state
 changes in system state are only allowed to occur at specific times

controlled by an external periodic clock
 the clock period is the time that elapses between state changes it the clock period is the time that elapses between state changes it

must be sufficiently long so that the system reaches a steady-state
before the next state change at the end of the period

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Example of combinational and sequential logic

C Combinational:
 input A, B
 wait for clock edge

A
C

 wait for clock edge
 observe C
 wait for another clock edge

B

Clock

g
 observe C again: will stay the same

 Sequential:
 input A, B
 wait for clock edge
 observe C observe C
 wait for another clock edge
 observe C again: may be different

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

g y

Abstractions

S Some we've seen already
 digital interpretation of analog values
 transistors as switches transistors as switches
 switches as logic gates
 use of a clock to realize a synchronous sequential circuity q

 Some others we will see
 truth tables and Boolean algebra to represent combinational logic
 encoding of signals with more than two logical values into

binary form
 state diagrams to represent sequential logic state diagrams to represent sequential logic
 hardware description languages to represent digital logic
 waveforms to represent temporal behavior

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

An example

C f ( Calendar subsystem: number of days in a month (to control
watch display)
 used in controlling the display of a wrist-watch LCD screen used in controlling the display of a wrist watch LCD screen

 inputs: month, leap year flag
 outputs: number of days

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Implementation in software

()integer number_of_days (month, leap_year_flag)
{
switch (month) {switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1) then return (29)

l t (28)else return (28);
case 3: return (31);
...
case 12: return (31);
default: return (0);

}}

}

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Implementation as a
combinational digital system

month leap d28 d29 d30 d31

 Encoding:
 how many bits for each input/output?
 binary number for month p

0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0

 binary number for month
 four wires for 28, 29, 30, and 31

 Behavior:

leapmonth

0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0

 combinational
 truth table

ifi ti 0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1

specification

1010 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

d28 d29 d30 d31
111

Combinational example (cont’d)

symbol
for not

 Truth-table to logic to switches to gates
 d28 = 1 when month=0010 and leap=0
 d28 = m8'•m4'•m2•m1'•leap' d28 = m8 •m4 •m2•m1 •leap

 d31 = 1 when month=0001 or month=0011 or ... month=1100
 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ... (m8•m4•m2'•m1')
 d31 = can we simplify more?

month leap d28 d29 d30 d31
0001 0 0 0 1

symbol
f d

symbol
for or

0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 0 0 1 0for and for or 0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

111– – – – – –
0000 – – – – –

Combinational example (cont’d)

 d28 = m8'•m4'•m2•m1'•leap’
 d29 = m8'•m4'•m2•m1'•leap

d30 (8' 4 2' 1') + (8' 4 2 1') + d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +
(m8•m4'•m2'•m1) + (m8•m4'•m2•m1)

= (m8'•m4•m1') + (m8•m4'•m1)() ()
 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +

(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(8 4' 2' 1') (8 4' 2 1')(m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

Activity

f ? How much can we simplify d31?

d31 is true if:month is 7 or less and odd (1, 3, 5, 7), or
month is 8 or more and even (8 10 12 and includes 14)month is 8 or more and even (8, 10, 12, and includes 14)

d31 is true if:m8 is 0 and m1 is 1, or m8 is 1 and m1 is 0

 What if we started the months with 0 instead of 1?

d31 = m8’m1 + m8m1’

 What if we started the months with 0 instead of 1?
(i.e., January is 0000 and December is 1011)

More complex expression (0, 2, 4, 6, 7, 9, 11):

d31 = m8’m4’m2’m1’ + m8’m4’m2m1’ + m8’m4m2’m1’ + m8’m4m2m1’
+ m8’m4m2m1 + m8m4’m2’m1 + m8m4’m2m1

d31 = m8’m1’ + m8’m4m2 + m8m1 (includes 13 and 15)

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

d31 m8 m1 + m8 m4m2 + m8m1 (includes 13 and 15)
d31 = (d28 + d29 + d30)’

Combinational example (cont’d)

 d28 = m8'•m4'•m2•m1'•leap’
 d29 = m8'•m4'•m2•m1'•leap

d30 (8' 4 2' 1') + (8' 4 2 1') + d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +
(m8•m4'•m2'•m1) + (m8•m4'•m2•m1)

 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + d31 (m8 m4 m2 m1) (m8 m4 m2 m1)
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(m8•m4'•m2'•m4') + (m8•m4'•m2•m1') +
(8 4 2' 1')(m8•m4•m2'•m1')

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Another example

 Door combination lock:
 punch in 3 values in sequence and the door opens; if there is an

error the lock must be reset; once the door opens the lock musterror the lock must be reset; once the door opens the lock must
be reset

i t f i t l t inputs: sequence of input values, reset
 outputs: door open/close
 memory: must remember combination memory: must remember combination

or always have it available as an input

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Implementation in software

i t bi ti l k () {integer combination_lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;g [] , , ;

while (!new_value());
v1 = read_value();
if (1 ! [1]) h 1if (v1 != c[1]) then error = 1;

while (!new_value());
v2 = read value();_ ();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

() (); ();

}

Implementation as a sequential digital system

 Encoding:
 how many bits per input value?
 how many values in sequence? how many values in sequence?
 how do we know a new input value is entered?
 how do we represent the states of the system?p y

 Behavior:
 clock wire tells us when it’s ok

t l k t i t

resetvaluenew

to look at inputs
(i.e., they have settled after change)

 sequential: sequence of values clock state
q q

must be entered
 sequential: remember if an error occurred

fi it t t ifi ti
open/closed

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

 finite-state specification

Sequential example (cont’d):
abstract control
 Finite-state diagram

 states: 5 states
 represent point in execution of machine represent point in execution of machine
 each state has outputs

 transitions: 6 from state to state, 5 self transitions, 1 global

closed

ERR

 changes of state occur when clock says it’s ok
 based on value of inputs

 inputs: reset new results of comparisons

C2!=value
& new

C3!=value
& new

C1!=value
& new

 inputs: reset, new, results of comparisons
 output: open/closed

reset closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C3=value
& new

OPEN

open

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

not newnot newnot new

& new & new & new

Sequential example (cont’d):
data-path vs. control
 Internal structure

 data-path
 storage for combination

 control
 finite-state machine controller storage for combination

 comparators
 finite state machine controller
 control for data-path
 state changes controlled by clock

resetnew equal

C1 C2 C3
value

multiplexer

q

t ll
mux

comparator

multiplexer controllercontrol
clock

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

open/closedequal

Sequential example (cont’d):
finite-state machine
 Finite-state machine

 refine state diagram to include internal structure

closed

ERR

not equal
& new

not equal
& new

not equal
& new

S1 S2 S3 OPEN
closed

mux=C1reset equal
& new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

not newnot newnot new

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Sequential example (cont’d):
finite-state machine
 Finite-state machine

 generate state table (much like a truth-table) closed

not equal
& new

not equal not equal

ERR

t

closed
mux=C1

reset equal
& new

& new & new
not equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR closed

next

0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open
0 OPEN OPEN open

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

0 – – OPEN OPEN – open
0 – – ERR ERR – closed

Sequential example (cont’d):
encoding

 Encode state table
 state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000 001 010 011 100 needs at least 3 bits to encode: 000, 001, 010, 011, 100
 and as many as 5: 00001, 00010, 00100, 01000, 10000
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 output mux can be: C1, C2, or C3
 needs 2 to 3 bits to encode
 choose 3 bits: 001 010 100 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 needs 1 or 2 bits to encode
 choose 1 bits: 1, 0

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

Sequential example (cont’d):
encoding
 Encode state table Encode state table

 state can be: S1, S2, S3, OPEN, or ERR
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 output mux can be: C1 C2 or C3 output mux can be: C1, C2, or C3
 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 choose 1 bits: 1, 0 choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0

next

good choice of encoding!

mux is identical to
last 3 bits of state

0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0 last 3 bits of state

open/closed is
identical to first bit
of state

0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

of state
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

Activity

f f Have lock always wait for 3 key presses exactly before
making a decision
 remove reset remove reset

E2

not new not new

E3
new

ERR
new

not equal
& new

not equal
&

not equal
& new

closed closed
new

closed
new

& new & new

closed
mux=C1 equal

S1 S2 S3 OPEN
closed

mux=C2 equal
closed

mux=C3 equal open

& new

q
& new

not newnot newnot new

q
& new

q
& new

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

Sequential example (cont’d):
controller implementation

f

resetnew equal special circuit element,
called a register for

 Implementation of the controller

controller
mux

t l

called a register, for
remembering inputs
when told to by clock

controllercontrol
clock

resetnew equal
open/closed

mux
control comb. logiccontrol

clockstate

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

open/closed

Design hierarchy

systemsystem

data path controldata-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

networks

Summary

 That was what the entire course is about
 converting solutions to problems into combinational and

sequential networks effectively organizing the designsequential networks effectively organizing the design
hierarchically

 doing so with a modern set of design tools that lets us handle
l d i ff ti llarge designs effectively

 taking advantage of optimization opportunities

 Now lets do it again
 this time we'll take nine weeks instead of one

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

