Why study logic design?

Obvious reasons
o this course is part of the CS/CompE requirements

o it is the implementation basis for all modern computing devices
building large things from small components
provide a model of how a computer works

More important reasons

o the inherent parallelism in hardware is often our first exposure to
parallel computation

o it offers an interesting counterpoint to software design and is
therefore

useful in furthering our understanding of computation, in general
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What will we learn in this class?

The language of logic design

o Boolean algebra, logic minimization, state, timing, CAD tools

The concept of state in digital systems

o analogous to variables and program counters in software systems
How to specify/simulate/compile/realize our designs

o hardware description languages

o tools to simulate the workings of our designs

o logic compilers to synthesize the hardware blocks of our designs
o mapping onto programmable hardware

Contrast with software design

o sequential and parallel implementations

o specify algorithm as well as computing/storage resources it will use
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Applications of logic design

Conventional computer design

o CPUs, busses, peripherals

Networking and communications

o phones, modems, routers

Embedded products

o in cars, toys, appliances, entertainment devices

Scientific equipment

o testing, sensing, reporting

The world of computing is much much bigger than just PCs!
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A quick history lesson

1850: George Boole invents Boolean algebra

o maps logical propositions to symbols

o permits manipulation of logic statements using mathematics

1938: Claude Shannon links Boolean algebra to switches

o his Masters’ thesis

1945: John von Neumann develops the first stored program computer
o its switching elements are vacuum tubes (a big advance from relays)
1946: ENIAC . . . The world’s first completely electronic computer
o 18,000 vacuum tubes

o several hundred multiplications per minute

1947: Shockley, Brittain, and Bardeen invent the transistor

o replaces vacuum tubes

o enable integration of multiple devices into one package

o gateway to modern electronics
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What is logic design?

What is design?

o given a specification of a problem, come up with a way of solving
It choosing appropriately from a collection of available
components

o while meeting some criteria for size, cost, power, beauty,
elegance, etc.

What is logic design?
o determining the collection of digital logic components to perform

a specified control and/or data manipulation and/or
communication function and the interconnections between them

o which logic components to choose? — there are many
Implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)

o the design may need to be optimized and/or transformed to meet
design constraints
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What is digital hardware?

Collection of devices that sense and/or control wires that carry a
digital value (i.e., a physical quantity that can be interpreted

aS a “OH Or Hl”)

o example: digital logic where voltage < 0.8vis a “0” and > 2.0v is a “1”

o example: pair of transmission wires where a “0” or “1” is distinguished
by which wire has a higher voltage (differential)

o example: orientation of magnetization signifies a “0” or a “1”

Primitive digital hardware devices

o logic computation devices (sense and drive)
are two wires both “1” - make another be “1” (AND)
IS at least one of two wires “1” - make another be “1” (OR)
Is a wire “1” - then make another be “0” (NOT)

o memory devices (store) sense
store a value

recall a previously stored value @ drive
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What is happening now in digital design?

Important trends in how industry does hardware design
o larger and larger designs

o shorter and shorter time to market

o cheaper and cheaper products

Scale

o pervasive use of computer-aided design tools over hand methods
o multiple levels of design representation

Time

o emphasis on abstract design representations

o programmable rather than fixed function components

o automatic synthesis techniques

o importance of sound design methodologies

Cost

o higher levels of integration

o use of simulation to debug designs

o simulate and verify before you build
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CSE 370: concepts/skills/abilities

Understanding the basics of logic design (concepts)
Understanding sound design methodologies (concepts)
Modern specification methods (concepts)

Familiarity with a full set of CAD tools (skills)

Realize digital designs in an implementation technology (skills)

Appreciation for the differences and similarities (abilities)
In hardware and software design

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation
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Computation: abstract vs. implementation

Up to now, computation has been a mental exercise (paper,
programs)

This class is about physically implementing computation using
physical devices that use voltages to represent logical values

Basic units of computation are:

0 representation: "0", "1" on a wire
set of wires (e.qg., for binary ints)
o assignment: X =Yy
o data operations: X+y—5
o control:
sequential statements: A; B; C
conditionals: if x==1 then vy
loops: for(i=1;1==10, i++)
procedures: A; proc(...); B;

We will study how each of these are implemented in hardware
and composed into computational structures
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Switches: basic element of physical
implementations

Implementing a simple circuit (arrow shows action if wire
changes to “1”):

l A @ Z
— ® ] close switch (if A is “1” or asserted)
IM|| and turn on light bulb (2)
T

Z
A @
4.1. / open switch (if A is “0” or unasserted)
l““' and turn off light bulb (2)
Y
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Switches (cont’d)

Compose switches into more complex ones (Boolean
functions):

A and B

.
;
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Switching networks

Switch settings

o determine whether or not a conducting path exists to light
the light bulb

To build larger computations

o use a light bulb (output of the network) to set other switches
(inputs to another network).

Connect together switching networks

o to construct iarger switching networks, i.e., there is a way to
connect outputs of one network to the inputs of the next.
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Relay networks

A simple way to convert between conducting paths and
switch settings is to use (electro-mechanical) relays.

What is a relay?

_.
o—|I[I h—e
conducting |
path composed
of switches
closes circuit
@

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

What determines the switching speed of a relay network?
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Transistor networks

Relays aren't used much anymore

o some traffic light controllers are still electro-mechanical
Modern digital systems are designed in CMOS technology
o MOS stands for Metal-Oxide on Semiconductor

o Cis for complementary because there are both normally-open
and normally-closed switches

MOS transistors act as voltage-controlled switches
o similar, though easier to work with than relays.
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MOS transistors

MOS transistors have three terminals: drain, gate, and source

o they act as switches in the following way:
If the voltage on the gate terminal is (some amount) higher/lower
than the source terminal then a conducting path will be
established between the drain and source terminals

G G
1 O
s— —D s— L—bp
n-channel p-channel
open when voltage at G is low closed when voltage at G is low
closes when: opens when:
voltage(G) > voltage (S) + ¢ voltage(G) < voltage (S) — ¢
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MOS networks

v —

Ov —

I - Introduction

e— Y

what is the
relationship
between x and y?

X

y

0 volts

3 volts
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Two input networks

X Y
O
3V
T_ O
Zl
ov —
X Y
oS oS
3V —

Rt

Ov l___

what is the
relationship

between X, y and z?

y

z1

z2

0 volts
0 volts
3 volts

3 volts

0 volts
3 volts
0 volts

3 volts

I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz

17



Speed of MOS networks

What influences the speed of CMOS networks?

o charging and discharging of voltages on wires and gates of
transistors

Capacitors hold charge
0 capacitance is at gates of transistors and wire material

Resistors slow movement of electrons
o resistance mostly due to transistors
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Representation of digital designs

s Physical devices (transistors, relays)
= Switches

= Truth tables

= Boolean algebra

= Gates

= Waveforms

= Finite state behavior

= Register-transfer behavior

s Concurrent abstract specifications
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Digital vs. analog

Convenient to think of digital systems as having only
discrete, digital, input/output values

In reality, real electronic components exhibit
continuous, analog, behavior

Why do we make the digital abstraction anyway?

o Sswitches operate this way

o easier to think about a small number of discrete values
Why does it work?

o does not propagate small errors in values

o always resetsto O or 1
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Mapping from physical world to binary world

Technology State O State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on

Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit
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Combinational vs. sequential digital circuits

A simple model of a digital system is a unit with inputs and
outputs:

—

—>
inputs ———* system [ outputs
| e

[ ]

[ J

[ ]
—_—

Combinational means "memory-less”

o adigital circuit is combinational if its output values
only depend on its input values
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Combinational logic symbols

Common combinational logic systems have standard symbols
called logic gates

o Buffer, NOT

A > 7 —>o—
o AND, NAND

A - easy to implement

] - Z _
BT s with CMOS transistors
(the switches we have

2 OR, NOR available and use most)

A

5 >z O >
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Sequential logic

Sequential systems

o exhibit behaviors (output values) that depend not only
on the current input values, but also on previous input values

In reality, all real circuits are sequential

o because the outputs do not change instantaneously after an
iInput change

o why not, and why is it then sequential?

A fundamental abstraction of digital design is to reason
(mostly) about steady-state behaviors

o look at the outputs only after sufficient time has elapsed for the
system to make its required changes and settle down
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Synchronous sequential digital systems

Outputs of a combinational circuit depend only on current inputs
o after sufficient time has elapsed

Sequential circuits have memory

o even after waiting for the transient activity to finish

The steady-state abstraction is so useful that most designers
use a form of it when constructing sequential circuits:

o the memory of a system is represented as its state

o changes in system state are only allowed to occur at specific times
controlled by an external periodic clock

o the clock period is the time that elapses between state changes it
must be sufficiently long so that the system reaches a steady-state
before the next state change at the end of the period
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Example of combinational and sequential logic

Combinational:

input A, B

wait for clock edge

observe C A —
wait for another clock edge

observe C again: will stay the same

Sequential: Xcmw
o input A, B

wait for clock edge

observe C

wait for another clock edge

observe C again: may be different

B—P

o o O o

o o O o
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Abstractions

Some we've seen already

Q

Q

Q

Q

digital interpretation of analog values

transistors as switches

switches as logic gates

use of a clock to realize a synchronous sequential circuit

Some others we will see

Q

Q

truth tables and Boolean algebra to represent combinational logic

encoding of signals with more than two logical values into
binary form

state diagrams to represent sequential logic
hardware description languages to represent digital logic
waveforms to represent temporal behavior
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An example

Calendar subsystem: number of days in a month (to control
watch display)

o used in controlling the display of a wrist-watch LCD screen

o inputs: month, leap year flag
o outputs: number of days
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Implementation in software

integer number_of days ( month,

{
switch (month) {
case 1: return (31);

leap year flag)

case 2: 1T (leap year flag == 1) then return (29)

case 3: return (31);

case 12: return (31);
default: return (0);

}
}

else return (28);
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Implementation as a
combinational digital system

Encoding:
o how many bits for each input/output?
- binary number for month month leap | d28 d29 d30 d31
0000 — - - - -
o four wires for 28, 29, 30, and 31 0001 - o 0 0 1
_ 0010 0 1 0 0 O
Behavior: 0010 1 0O 1 0 O
L 0011 — 0O 0 0 1
o combinational 0100 _ 0O 0 1 O
0101 — 0O 0 0 1
a '[I’Uthtab|e month Ieap 0110 _ 0 0 1 0
specification l l l l l 0111 _ O 0 0 1
1000 — 0O 0 0 1
1001 — 0O 0 1 0
1010 — 0O 0 0 1
1011 — 0O 0 1 0
1100 — 0O 0 0 1
BN N
111— — - - - -

d28 d29 d30d31
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Combinational example (cont’d)

Truth-table to logic to switches to gates
o d28 =1 when month=0010 and leap=0 S%ngl
0 d28 = m8'sm4'sm2eml'eleap' T

o d31 =1 when month=0001 or month=0011 or ... month=1100
o d31=(m8*m4'sm2'sml) + (M8'*m4'sm2eml) + ... (M8em4em2'sml’)
o d31 = can we simplify more?

N
(0]

' I 1| © OoOorooQ
N
©

RPOOOOoOI
w
o

w
[

month leap
0001 —
0010 0
0010 1

symbol
symbol 0011
for and for or 0100

ORrRrOOoORrK

1100
1101
111-
0000

I 11 © ololol Nollel

I I 1 ©
[ I I
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Combinational example (cont’d)

d28 = m8'*m4'sm2eml'sleap’

d29 = m8'sm4'sm2em1l'sleap

d30 = (m8'*m4em2'sml’) + (M8'm4em2eml’) +
(m8em4'sm2'sm1) + (M8em4'sm2em1l)

= (Mm8'*m4eml’) + (m8em4'sm1l)

d31 = (m8'*m4'sm2'sm1) + (M8'*m4'sm2em1l) +
(m8'e*m4em2'sm1) + (M8'sm4em2em1l) +
(m8em4'sm2'sm1') + (M8em4'sm2em1l') +
(M8em4em2'sm1’)

mi  —

md —

mi  —

[T J—

mi

ml |

D—« did mi

ml —

leap —|

I - Introduction

[N

AN

leap |
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Activity

How much can we simplify d317?

What if we started the months with O instead of 17
(i.e., January is 0000 and December is 1011)
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Combinational example (cont’d)

d28 = m8'*m4'sm2eml'sleap’

d29 = m8'sm4'sm2em1l'sleap

d30 = (m8'*m4em2'sml’) + (M8'm4em2eml’) +
(m8em4'sm2'sm1) + (M8em4'sm2em1l)

d31 = (m8'*m4'sm2'sm1l) + (M8'em4'sm2em1l) +
(m8'e*m4em2'sm1) + (M8'sm4em2eml) +
(m8em4'sm2'sm4') + (M8em4'sm2em1') +
(m8em4em2'sml’)

— é‘}
== e
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Another example

Door combination lock:

o punch in 3 values in sequence and the door opens; if there is an
error the lock must be reset; once the door opens the lock must
be reset

o inputs: sequence of input values, reset
o outputs: door open/close

o memory: must remember combination
or always have it available as an input
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35



Implementation in software

integer combination _lock () {
integer vi, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while ('new value( ));
vl = read value( );
if (vl '= c[1]) then error = 1;

while ('new value( ));
v2 = read value( );
it (v2 '= c[2]) then error = 1;

while (Inew_value( ));
v3 = read_value( );

it (v2 '= c[3]) then error = 1;

iIT (error == 1) then return(0); else return (1);

}
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Implementation as a sequential digital system

Encoding:

o how many bits per input value?

o how many values in sequence?

o how do we know a new input value is entered?
o how do we represent the states of the system?

Behavior: new value reset

" olookatmpus .

(i.e., they have settled after change)

o sequential: sequence of values clock —>
must be entered
o sequential: remember if an error occurred open/closed

o finite-state specification
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Sequential example (cont’d):
abstract control

Finite-state diagram

0 States: 5 states
represent point in execution of machine
each state has outputs

o transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says it's ok l

based on value of inputs ERR
o inputs: reset, new, results of comparisons
o output: open/closed Cli=value )
C3!=value
& new
s1 f\sz OPEN
reset ——( closed » closed » closed » open
Cl=value C2=value U C3=value
& new & new T_I & new U

not new not new not new
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Sequential example (cont’d):

data-path vs. control

Internal structure

«——clock

o data-path o control
storage for combination finite-state machine controller
comparators control for data-path
state changes controlled by clock
new equal reset
value l l l
Cl] [C2] [C3
' ! ' mux
multiplexer control controller
|
comparator
equal open/closed

I - Introduction
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Sequential example (cont’d):
finite-state machine

Finite-state machine
o refine state diagram to include internal structure

(ilil;RR

not equal
& new

S1 S2

closed @
reset '@ equal " \mux=CZ~_equal ’w equal "\ open
U & new & new U & new U

not new not new not new

not equal
& new

OPEN
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Sequential example (cont’d):

finite-state machine

Finite-state machine
o generate state table (much like a truth-table)

next not new

reset  new equal state | state  mux open/closed
1 - - - S1 C1 closed

0 0 - S1 S1 C1 closed

0 1 0 S1 ERR — closed

0 1 1 S1 S2 C2 closed

0 0 - S2 S2 C2 closed

0 1 0 S2 ERR - closed

0 1 1 S2 S3 C3 closed

0 0 - S3 S3 C3 closed

0 1 0 S3 ERR - closed

0 1 1 S3 OPEN - open

0 — — OPEN | OPEN - open

0 - - ERR ERR - closed

not equal

not new not new
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Sequential example (cont’d):
encoding

Encode state table

o State can be: S1, S2, S3, OPEN, or ERR
needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

o output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

o output open/closed can be: open or closed
needs 1 or 2 bits to encode

choose 1 hits: 1, 0
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Sequential example (cont’d):

encoding

Encode state table
o State can be: S1, S2, S3, OPEN, or ERR

I - Introduction

choose 4 bits: 0001, 0010, 0100, 1000, 0000

o output mux can be: C1, C2, or C3
choose 3 bits: 001, 010, 100

o output open/closed can be: open or closed

choose 1 hits: 1, 0

good choice of encoding!

mux is identical to
last 3 bits of state

open/closed is
identical to first bit

next

reset  new equal state | state  mux open/closed
1 — — — 0001 001 0

0 0 — 0001 | 0001 001 0

0 1 0 0001 | 0000 - 0

0 1 1 0001 | 0010 010 0

0 0 — 0010 | 0010 010 0

0 1 0 0010 | 0000 - 0

0 1 1 0010 | 0100 100 0

0 0 — 0100 | 0100 100 0

0 1 0 0100 | 0000 - 0

0 1 1 0100 | 1000 - 1 of state
0 — — 1000 | 1000 - 1

0 — — 0000 | 0000 - 0
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Activity

Have lock always wait for 3 key presses exactly before
making a decision
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Sequential example (cont’d):
controller implementation

Implementation of the controller

new equal

reset

l

| |

«——clock

<

open/closed

I - Introduction

<

MuX

special circuit element,
called a register, for
remembering inputs

when told to by clock

new equal reset

Y A \4

A
comb. logic

~ control

T— state

A

v
open/closed
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Design hierarchy

system
data-path control
e« multiplexer comparator state combinational
registers registers logic
register logic
switching
networks
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Summary

That was what the entire course is about

o converting solutions to problems into combinational and
sequential networks effectively organizing the design
hierarchically

o doing so with a modern set of design tools that lets us handle
large designs effectively

o taking advantage of optimization opportunities

Now lets do it again
o this time we'll take nine weeks instead of one
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