Combinational logic

Basic logic

o Boolean algebra, proofs by re-writing, proofs by perfect induction
o logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, .. ., minimal set

Logic realization

o two-level logic and canonical forms

o incompletely specified functions

Simplification

o uniting theorem

o grouping of terms in Boolean functions

Alternate representations of Boolean functions

o cubes
o Karnaugh maps

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:
o In general, there are 2**(2**n) functions of n inputs

Y — —F
X Y 16 possible functions (FO—F15)
0 oo o o o o o o o 1 1 1 1 1 1 1 1
0 i1{0 o0 o O 1 1 1.1 O O O O 1 1 1 1
1 oo o 1 1 0 O 1 1 0 O 1 1 O O 1 1
1 1o 12 o 1 0 1 O 1 O 1 O 1 o0 1 o0 1
O/ X/ // \\ \ \\1
Y notY notX
X and Y X xorY X=Y — X nand Y
XorY X nor Y not (X and Y)
not (X or Y)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Cost of different logic functions

Different functions are easier or harder to implement

Q

o o o o

U

each has a cost associated with the number of switches needed

0 (FO) and 1 (F15): require O switches, directly connect output to
low/high

X (F3) and Y (F5): require 0 switches, output is one of inputs
X' (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
XnorY (F4) and X nand Y (F14): require 4 switches

~ m

XorY (F7)and Xand Y (F1): require 6 switches

X=Y (F9)and X @ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?

o For example, implementing XandY
IS the same as implementing not (X nand Y)

In fact, we can do it with only NOR or only NAND
o NOT is just a NAND or a NOR with both inputs tied together

X Y | XnorY X Y | XnandY
O O 1 O O 1
1 1 0 1 1 0

o and NAND and NOR are "duals",
that is, its easy to implement one using the other

XnandY = not((not X) nor (notY))
XnorY = not ((not X) nand (not Y))

But lets not move too fast . . .
o lets look at the mathematical foundation of logic

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

An algebraic structure

An algebraic structure consists of

Q

o O 0O

~No U~ WN R

a set of elements B

binary operations { + , * }

and a unary operation {’ }

such that the following axioms hold:

the set B contains at least two elements: a, b

. closure: a+b isinB a-e
. commutativity: atb=Db+a ae
. associativity: at(b+c)=(a+b)+c a-e
. Identity: a+0=a a-e
. distributivity: at(bec)=(@+b)e(a+c) a-
. complementarity: a+a’ =1 ae

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Boolean algebra

Boolean algebra

o B={0, 1}

o variables

o +islogical OR, ¢ is logical AND
o 'lislogical NOT

All algebraic axioms hold

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the
operators: ’, +, and e

X Y XeY X Y X | X eY

0 0] 0] 0 0] 1 0]

0] 1 0] 0] 1 1 1

1 0] 0] 1 0] 0] 0]

1 1 1 1 1 0] 0]

X Y X 1Y [XeY [XeY|[(XeY)+ (X =Y")

0 0] 1 1 0] 1 1

0] 1 1 0] 0] 0] 0] i , B .

1 0 0 1 0 0 0 (XeY)+ (X oY) = X=Y

1 1 0] 0] 1 0 1 \
Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise

IT - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Axioms and theorems of Boolean algebra

identity

1. X+0=X
null

2. X+1=1
idempotency:

3. X+X=X
involution:

4. (X) =X
complementarity:

5. X+X' =1
commutativity:

6. X+Y=Y+X

associativity:
7. X+Y)+Z=X+(Y+2)

1D.

2D.

3D.

oD.

6D.

/D.

XeY=YeX

(XeY)eZ=Xs(Y*2)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Axioms and theorems of Boolean algebra (cont’d)

distributivity:
8. Xe(Y+2)=(XeY)+(XeZ) 8D. X+ (YeZ)=(X+Y)e(X+2)
uniting:
9. XeY+XeY =X OD. X+Y)e(X+Y)=X
absorption:
10. X+ XY =X 10D. X (X+Y)=X
11. (X+Y)eY=XeY 11D. (XeY)+Y=X+Y
factoring:
12. (X+Y)e (X' +2) = 12D. XeY + X' o Z =
XeZ+X oY (X+2) (X' +Y)
concensus:
13. (XeY)+(Ye2)+ (X eZ)= 13D.(X+Y)e (Y +2)e (X' +2)=
XeY+X oZ (X+Y)e (X +2)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:

14 (X+Y+..)=X oY e .. 14AD. (XeYe.)=X+Y"+ ..
generalized de Morgan’s:

15. (X, X5,...,X,,,0,1,+,¢) = (X, X,,....,X",1,0,0,4)

establishes relationship between « and +

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Axioms and theorems of Boolean algebra (cont’d)

Duality

o adual of a Boolean expression is derived by replacing
by +,+bye 0by 1, and 1 by O, and leaving variables unchanged

o any theorem that can be proven is thus also proven for its dual!
o a meta-theorem (a theorem about theorems)
duality:

16. X+Y+ ... XeYeo

generalized duality:
17. 1 (X, X5,...,X,0,1,+,°) < (X, X,,...,X,,,1,0,0,+)

Different than deMorgan’s Law
o this is a statement about theorems
o this is not a way to manipulate (re-write) expressions

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Proving theorems (rewriting)

Using the axioms of Boolean algebra:

o e.g., prove the theorem: XeY+XeY
distributivity (8) Xe¥Y+ XeY
complementarity (5) Xe(Y+Y)
identity (1D) X e (1)

o e.g., prove the theorem: X+ XeY
identity (1D) X + XeY
distributivity (8) Xel + XeY
identity (2) Xe(1+Y)
identity (1D) X e (1)

IT - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

12

Activity

Prove the following using the laws of Boolean algebra:
0 XeY)+(Ye2)+ (X eZ)= XeY+X oZ

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

13

Proving theorems (pertect induction)

Using perfect induction (complete truth table):
o e.g., de Morgan’s:

, L X Y X Y [(X+Y) XeY
(X+Y)y=XeY 0 0 1 1 1 1
NOR is equivalent to AND O 1 1 0O 0 0
with inputs complemented 10 0 1 0 0
P P 1 1 0 0 0 0

: : , X Y X Y [(XeY)y X +Y
(XeY)y =X+Y 0 0 1 1 1 T
NAND is equivalent to OR O 1 1 O 1 1
it i 1 0 0 1 1 1
with inputs complemented 1 1 0 0 0 0

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

14

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in alallallall A
Outputs: Sum, Carry-out

5

=

Cout Cin

AYATAVAYA

A—>

B—>

PRrRrRPROOOO
PRPROORFLOO|Im
POROROROID

IT - Combinational Logic

O
RRrPROROOOR

— > Cout

Cin —

S=ABCin+ABCinn+AB Cin"+ AB Cin
Cout=ABCin+AB Cin+ ABCin"+ AB Cin

RPOORORLEFRLPOW

© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Apply the theorems to simplity expressions

The theorems of Boolean algebra can simplify Boolean
expressions

o e.g., full adder’s carry-out function (same rules apply to any function)

Cout

IT - Combinational Logic

A BCin+AB Cin+ ABCin"+ AB Cin

ABCin + AB' Cin + ABCin" +|/ABCin + ABCin

ABCin + ABCin + AB' Cin + ABCin" + ABCin
(A+A)BCin + AB'Cin + ABCin" + ABCin
(1)BCin + AB Cin + ABCin" + ABCin

B Cin
B Cin
B Cin
B Cin
B Cin
B Cin
B Cin

+

++ 4+ ++ o+

AB Cin +ABCin" +/ABCin + ABCin

AB Cin + ABCin + ABCin" + ABCin

AB +B)Cin + ABCin" + ABCin

A@)Cin + ABCin" + ABCin

ACin + AB (Cin" + Cin)

ACin + AB (1)

ACin + AB adding extra terms
creates new factoring

opportunities

© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Activity

Fill in the truth-table for a circuit that checks that a 4-bit
number is divisible by 2, 3, or 5

X8 X4 X2 X1 By?2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0

Write down Boolean expressions for By2, By3, and By5

IT - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

17

| Activity

IT - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

18

From Boolean expressions to logic gates

I
>
I
=<
= OfX

NOT X X ~X

AND XY XY XAY Yy —

>
Q
N
P OOIX

OR X+Y X v Y éD_z

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Y

1

0
Y |Z
O (O
1 |0
O |0
1 |1
X Y |Z
O 0 |0
o 1 |1
1 0 |1
1 1 |1

19

From Boolean expressions to logic gates (cont’d)

NAND X :Do_z
NOR X 3
Y D_Z

= O OfXx
= O Ol<
Or Pk RN

= O OlX
= O R Ol<
O OO RN

XxorY=XY +XY
X or Y but not both
("inequality", "difference")

X

<

_<

N
= O OXx
O R Ol<
O Rk ON

XxnorY=XY+ XY
X and Y are the same
("equality", "coincidence")

X

[

_<

< X

J L

N
= O OlX
= O Ol<
OO RN

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

From Boolean expressions to logic gates (cont’d)

More than one way to map expressions to gates

0 eg., Z=A'+B +(C+D)=(A"«(B *(C+D)))

T2
T1

use of 3-input gate

A—

C 3
5 __DJ T2

IT - Combinational Logic

° |) A —{>
B —Do— >JT1 B — >0

b—) >

© Copyright 2004, Gaetano Borriello and Randy H. Katz

21

Wavetorm view of logic functions

Just a sideways truth table
o but note how edges don'’t line up exactly
o it takes time for a gate to switch its output!

time

v

#

T

Mot =
W&

Mot (3 & %)
aEy

Mat (¥ + ')
wowar

Mot CH wor YY)

IT - Combinational Logic

change in Y takes time to "propagate" through gates

© Copyright 2004, Gaetano Borriello and Randy H. Katz

22

Choosing ditferent realizations of a function

two-level realization
(we don’t count NOT gates)

PRPRRPPRPOOOOI>
PROORLPFOOm
RPOPFRPORFRLROPRFROONn
OrRPFRPORFROFrOIN

>

- £1

multi-level realization
(gates with fewer inputs)

}

- £z

L

Dﬁ . XOR gate (easier to draw
):;>§3 but costlier to build)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Which realization 1s best?

Reduce number of inputs

o literal: input variable (complemented or not)
can approximate cost of logic gate as 2 transitors per literal
why not count inverters?

o fewer literals means less transistors
smaller circuits

o fewer inputs implies faster gates
gates are smaller and thus also faster

o fan-ins (# of gate inputs) are limited in some technologies

Reduce number of gates

o fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Which is the best realization? (cont’d)

Reduce number of levels of gates

o fewer level of gates implies reduced signal propagation delays

o minimum delay configuration typically requires more gates
wider, less deep circuits

How do we explore tradeoffs between increased circuit delay

and size?

o automated tools to generate different solutions

o logic minimization: reduce number of gates and complexity

o logic optimization: reduction while trading off against delay

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Are all realizations equivalent?

Under the same input stimuli, the three alternative
Implementations have

almost the same waveform behavior

o delays are different

o glitches (hazards) may arise — these could be bad, it depends

o variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent

| . 1IIIIIII | 200 |
& | L
B I | I _
c —|—|—|—|—|—|—|—=_
£l —I—I—I—"I—l I |—
e —I—I—I—"I—l I |—

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Implementing Boolean functions

Technology independent

Q

Q

Q

canonical forms
two-level forms
multi-level forms

Technology choices

Q

Q
Q
Q

packages of a few gates
reguiar iogic

two-level programmable logic
multi-level programmable logic

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

27

Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

o standard forms for a Boolean expression

o provides a unique algebraic signature

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

28

Sum-of-products canonical forms
Also known as disjunctive normal form
Also known as minterm expansion

F= 001 011 101 110 111
F= ABC + ABC + ABC + ABC' + ABC

PRRPRPOOOO>
PRPOOR R, OO
RPOROROR OO
PRPRPOROROM

F=ABC + ABC' + AB'C’

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

29

Sum-of-products canonical form (cont’d)

Product term (or minterm)
o ANDed product of literals — input combination for which output is true
o each variable appears exactly once, true or inverted (but not both)

A B C | minterms Ei ol form:
o o0 1 |ABC m F(A,B,C) =32m(1,3,5,6,7)
0 1 0 ABC' m2 = ml+m3+m5+m6+ m7
0 1 1 |ABC m3 = AB'C + ABC + AB'C + ABC' + ABC
1 0 0 |ABC m4 | N
1 0o 1 |ABC ms5 canonical form = minimal form
1 1 0 |ABC mé F(A,B,C) =ABC + ABC + AB'C + ABC + ABC'
1 1 1 |ABC m7 = (AB’' + AB + AB’ + AB)C + ABC’
= ((A' + A)(B' + B))C + ABC’
/ = C + ABC’
short-hand notation for =ABC' +C
minterms of 3 variables =AB+C

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

F= 000 010 100
F= A+B+C) (A+B +C) A+B+C)

PRPRPRPPRPOOOOX
PFRPROOREFFOOW
RPORFRPORFRPORFROOn

IT - Combinational Logic

RPRPRPOROROM
oo or\or\orm

F=(A+B+C)(A+B +C)(A+B+C)(A+B +C)(A+B +0C)

© Copyright 2004, Gaetano Borriello and Randy H. Katz

31

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
o ORed sum of literals — input combination for which output is false
o each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0O 0 0 |A+B+C MO F(A, B,C) =TIM(0,2,4)

0 0 1 | A+B+C M1 = MO e M2 « M4

0 1 0 |A+B+C M2 = (A+B+C)(A+B +C) (A +B+C)
O 1 1 |A+B+C M3

1 0 0 |A+B+C M4 canonical form = minimal form

1 0 1 [A+B+C Mo F(A,B,C) =(A+B+C)(A+B +C)(A+B+0C)
1 1 1 |A+B+C M7 (A+B+C) (A +B+0C)

/ = (A+C) (B + C)
short-hand notation for

maxterms of 3 variables

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

S-0-P, P-0-§, and de Morgan’s theorem

Sum-of-products

o F=ABC +ABC + AB'C’

Apply de Morgan’s

o (F) =(A'B'C’'+ ABC’ + AB'C'y

o F=(A+B+C)(A+B' +C)(A+B+C)

Product-of-sums

o F=(A+B+C)(A+B +C)(AA+B+C)(A+B +C)(A'+B +C)
Apply de Morgan’s

o (FY=((A+B+C)A+B +C)A'+B+C)A'+B +C)(A’+B +C"))
o F=ABC+ABC + AB'C + ABC' + ABC

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

33

Four alternative two-level implementations

of F = AB + C

canonical sum-of-products

21,

° L>o = —

fJ
DT>

) >

> s
>

D_ /minimized product-of-sums
L

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

minimized sum-of-products

canonical product-of-sums

Wavetorms for the four alternatives

Waveforms are essentially identical
o except for timing hazards (glitches)

o delays almost identical (modeled as a delay per level, not type of

gate or number of inputs to gate)

F1) g

FZ)

FZ N N)

Fd)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

35

Mapping between canonical forms

Minterm to maxterm conversion

o use maxterms whose indices do not appear in minterm expansion
o e.g., F(AB,C)=x2m(1,3,5,6,7) =I1IM(0,2,4)

Maxterm to minterm conversion

0 use minterms whose indices do not appear in maxterm expansion
o e.g., F(AB,C) =1IM(0,2,4) = ¥m(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’

0 use minterms whose indices do not appear

o e.g., F(AB,C)=x2m(1,3,5,6,7) F'(A,B,C) =Xm(0,2,4)
Maxterm expansion of F to maxterm expansion of F’

0 use maxterms whose indices do not appear

o e.g., F(A,B,C) =11IM(0,2,4) F'(A,B,C) =1IM(1,3,5,6,7)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Incompleteley specitied functions

Example: binary coded decimal increment by 1

o BCD digits encode the decimal digits 0 — 9
In the bit patterns 0000 — 1001

A B C D|W X Y Z

O O O O ||lo0 o o 1

o 0 0 1 100 1 QO off-set of W

O O 1 O |[[of O 1 1

0o 0 11 e 100 on-set of W

0 1 0 0 |]|0 1 O 1

8 1 (1) é 8 1 . don’t care (DC) set of W

0 1 1 1 1 0

1 0 0 O 1 0

1 0 O 1 (O O O

1 O 1 0 X X X _

1 0 1 1 Xl XX X these inputs patterns s_hould _

1 1 0 0 X X X never be encountered in practice
1 1 0 1 |IX¥ X X X —"don’t care” about associated
1 1 1 0 ||Xx X X X output values, can be exploited
1 1 1 1 X X X X iIn minimization

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Notation for incompletely specitied functions

Don’t cares and canonical forms

o so far, only represented on-set

o also represent don’t-care-set

o need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

1N

—~— [1 A1 1 Y e P e TP N Y. | 1 Sl1 T
=m0+mZ2+m4 +mb6 +m8 + dl0 + all Uiz T UlLS T UL1L4 T ULO

Z 0] +
Z=%[m(0,2,4,6,8) +d(10,11,12,13,14,15)]

5 Z=M1sM3e+M5eM7M9eD10+ D11+ D12« D13« D14+ D15
0 Z=TI[M(L,3,5,7,9) » D(10,11,12,13,14,15) |

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
o exploit don’t care information in the process

Algebraic simplification

o not an algorithmic/systematic procedure

o how do you know when the minimum realization has been found?
Computer-aided design tools

o precise solutions require very long computation times, especially for
functions with many inputs (> 10)

o heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
o to understand automatic tools and their strengths and weaknesses
o ability to check results (on small examples)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

o find two element subsets of the ON-set where only one variable
changes its value — this single varying variable can be eliminated
and a single product term used to represent both elements

F=AB+AB = (A+A)B' =B’

B has the same value in both on-set rows
— B remains

R |k O |O|X>

A has a different value in the two rows
— A is eliminated

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied

n input variables = n-dimensional "cube"

01 11
0 1
1-cube O——O Y 2-cube
X 00 10
X
111
000 X

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
Into a larger "face"

Example:
two faces of size 0 (nodes)

F
A B |F combine into a face of size 1(line)
01 11
0O 0 |1
0 1 |0 B
1 0 |1 00 10
A
1 1 |0

A varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

Three variable example

Binary full-adder carry-out logic

IT - Combinational Logic

(A'+A)BCin
A B Cin Cout AB(Cin'+Cin)
O 0 O 0
O 0 1 0
O 1 O 0
0 1 1 1 B 01
1 0 O 0 — .
1 0 1 1 000 A A(B+B")Cin
1 1 O 1
1 1 1 1 the on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that “111”
IS covered three times

Cout = BCin+AB+ACin

© Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Higher dimensional cubes

Sub-cubes of higher dimension than 2

F(A,B,C) = m(4,5,6,7)

on-set forms a square

011 111 l.e., a cube of dimension 2
010 110 represents an expression in one variable
Le., 3 dimensions — 2 dimensions
B 001 _
C 1 A Is asserted (true) and unchanged
B and C vary
000 A 100

This subcube represents the
literal A

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

m-dimensional cubes in a n-dimensional
Boolean space

In a 3-cube (three variables):

o a 0-cube, i.e., a single node, yields a term in 3 literals

o al-cube, i.e., aline of two nodes, yields a term in 2 literals

o a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

o a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,

o an m-subcube within an n-cube (m < n) yields a term
with n — m literals

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

45

Karnaugh maps

Flat map of Boolean cube
o wrap—around at edges
o hard to draw and visualize for more than 4 dimensions
o virtually impossible for more than 6 dimensions
Alternative to truth-tables to help visualize adjacencies
o guide to applying the uniting theorem

o on-set elements with only one variable changing value are
adjacent uniike the situation in a linear truth-tabie

A A B |F

BN_0 1 0o 0 |1

11 o] O 1 0 |1
1 3

1 1 |0

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Karnaugh maps (cont’d)

Numbering scheme based on Gray—code

o e.g.,00,01, 11, 10

o only a single bit changes in code for adjacent map cells

12

13

15

11

14

10

AB A
.00 01 11 10
0
0 2 6 4
cl1l
1 3 7 5
B
A
0 2 6 4
C
1 3 7 5
B

IT - Combinational Logic

Wy |

© Copyright 2004, Gaetano Borriello and Randy H. Katz

13 = 1101= ABC'D

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

010(110| 100

CJl 001| 011 111 101

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Karnaugh map examples

B!

AB+ ACin + BCin

0
Cinogl)
B

A
0 obtain the
cl ol o 1 |\ 1 complement
.C AC + BIC >< of the function
B by covering Os
with subcubes

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 49

More Karnaugh map examples

A

2

A

B
<

:EO 0 1

clo]o|Ca]1

G(A,B,C) = A

F(A,B,C) = 2m(0,4,5,7) =AC + B'C’

F' simply replace 1's with O's and vice versa
F'(A,B,C) =2 m(1,2,3,6)= BC' + AC

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

50

Karnaugh map: 4-variable example

F(A,B,C,D) = ¥m(0,2,3,5,6,7,8,10,11,14,15)

F=C +ABD +BD

A 1111

Lo]k]

0 1 0 0
D C
1 1 1 1\ D A
C — -
1 1 1 1) 0000 B

oy |

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 51

Karnaugh maps: don’t cares

f(A,B,C,D) =¥ m(1,3,5,7,9) + d(6,12,13)
o without don't cares
f= AD + BCD

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 52

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) =¥ m(1,3,5,7,9) + d(6,12,13)
o f=AD+B'CD without don't cares
a f=AD+CD with don't cares

ol ol x1I| o by using don't care as a "1"
/ a 2-cube can be formed
—

[1 T X 1 1] 5 ra.ther than a 1-cube to cover
L this node
1| 1)lo]| o
C — don't cares can be treated as
O X010 1s or Os
B depending on which is more
advantageous

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 53

Activity

Minimize the function F =X m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

54

Combinational logic summary

Logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
Axioms and theorems of Boolean algebra

o proofs by re-writing and perfect induction
Gate logic

o networks of Boolean functions and their time behavior
Canonical forms

o two-level and incompletely specified functions
Simplification

Later

o automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

O 0O O O

IT - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

55

