
Working with combinational logic

 Simplification Simplification
 two-level simplification
 exploiting don’t cares
 algorithm for simplification

 Logic realization
two level logic and canonical forms realized with NANDs and NORs two-level logic and canonical forms realized with NANDs and NORs

 multi-level logic, converting between ANDs and ORs
 Time behavior
 Hardware description languages

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Design example: two-bit comparator

A B C D LT EQ GT

LT A B < C DAN1

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0LT

EQ
GT

A B C D
A B = C D
A B > C D

B
C
D

N1

N2

1 1 1 0 0
0 1 0 0 0 0 1

0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1block diagram 1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

for each of the 3 output functions

Design example: two-bit comparator (cont’d)

0 0

1 0

0 0

0 0

A

1 0

0 1

0 0

0 0

A

0 1

0 0

1 1

1 1

A

1 0 0 0
D

1 1 0 1
C

0 1 0 0
D

0 0 1 0
C

0 0 1 1
D

0 0 0 0
C

K-map for EQK-map for LT K-map for GT

1 1 0 0

B
0 0 0 1

B
0 0 1 0

B

A' B' D + A' C + B' C DLT =

K map for EQK map for LT K map for GT

B C' D' + A C' + A B D'

EQ =

GT =

= (A xnor C) • (B xnor D)A' B' C' D' + A' B C' D + A B C D + A B' C D’

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

LT and GT are similar (flip A/C and B/D)

Design example: two-bit comparator (cont’d)

A B C D

two alternative

A B C D

two alternative
implementations of EQ
with and without XOR

EQ

XNOR i i l t d ithXNOR is implemented with
at least 3 simple gates

EQ

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

Design example: 2x2-bit multiplier

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

P1
P2
P4

A1
A2
B1 1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

P4
P8

B1
B2

block diagram
and

truth table

1 1 0 1 1 0
1 1 0 0 0 0 0 0

0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1truth table

4-variable K-map
for each of the 4

1 1 1 0 0 1

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

output functions

Design example: 2x2-bit multiplier (cont’d)

K f P8 K map for P4
A2A2

K-map for P8 K-map for P4
0 0

0 0

0 0

0 0
B1

0 0

0 0

0 0

0 0
B1

P4 = A2B2B1'
+ A2A1'B2

0 0

0 0

0 1

1 1
B2

0 0

0 0

1 0

0 0
B2 P8 = A2A1B2B1

K-map for P2 K-map for P1

A1

A2A2

A1

K map for P2 K map for P1 0 0

0 1

0 0

1 0
B1

0 0

0 0

0 0

1 1
B1

P1 = A1B1

0 1

0 0

1 0

0 0

A1

B2
0 1

0 1

0 1

1 0

A1

B2 P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 6

A1A1 + A2B2 B1
+ A2A1'B1

Design example: BCD increment by 1

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 10 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0

O1
O2

I1
I2

0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X

O4
O8

I4
I8

1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

andand
truth table

4-variable K-map for each of
the 4 output functions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

Design example: BCD increment by 1 (cont’d)

I8 I8
O8 O4

0 0

0 0

X 1

X 0
I1

I8

0 1

0 1

X 0

X 0
I1

I8

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

I1
0 1

0 0

X X

X X
I2

I1
1 0

0 1

X X

X X
I2

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'
O2 O1

0 0 X X

I4

I8

0 1 X X

I4

I8
O2 O1

0 0

1 1

X 0

X 0
I1

1 1

0 0

X 1

X 0
I1

0 0

1 1

X X

X X
I2

0 0

1 1

X X

X X
I2

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

I4 I4

Definition of terms for two-level simplification

I li t Implicant
 single element of ON-set or DC-set or any group of these elements that can

be combined to form a subcube
P i i li t Prime implicant
 implicant that can't be combined with another to form a larger subcube

 Essential prime implicant
 prime implicant is essential if it alone covers an element of ON-set
 will participate in ALL possible covers of the ON-set
 DC-set used to form prime implicants but not to make implicant essentialp p p

 Objective:
 grow implicant into prime implicants

(minimize literals per term)(p)
 cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Examples to illustrate terms

A

0 X

1 1

1 0

1 0
D

A
6 prime implicants:

A'B'D, BC', AC, A'C'D, AB, B'CD

D
1 0

0 0

1 1

1 1
C

minimum cover: AC + BC' + A'B'D

essential

0 0

B

A

minimum cover: AC + BC + A B D

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

0 0

1 1

1 0

1 0
DD

0 1

0 1

1 1

0 0
C

minimum cover: 4 essential implicants

essential

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

B
minimum cover: 4 essential implicants

Algorithm for two-level simplification

Al ith i i f d t i f K h Algorithm: minimum sum-of-products expression from a Karnaugh map

 Step 1: choose an element of the ON-set
 Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

 consider top/bottom row, left/right column, and corner adjacencies
 this forms prime implicants (number of elements always a power of 2)

 Repeat Steps 1 and 2 to find all prime implicants

 Step 3: revisit the 1s in the K-map
 if covered by single prime implicant, it is essential, and participates in final cover
 1s covered by essential prime implicant do not need to be revisited

 Step 4: if there remain 1s not covered by essential prime implicants
 select the smallest number of prime implicants that cover the remaining 1s

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Algorithm for two-level simplification (example)

A A A

X 1

0 1

0 1

1 1
D

X 1

0 1

0 1

1 1
D

X 1

0 1

0 1

1 1
D

0 X

0 1

X 0

0 1
C

0 X

0 1

X 0

0 1
C

0 X

0 1

X 0

0 1
C

A

B
2 primes around A'BC'D'

B
2 primes around ABC'D

B

AAA

X 1

0 1

0 1

1 1
D

X 1

0 1

0 1

1 1
D

X 1

0 1

0 1

1 1
D

X 1

0 1

0 1

1 1
D

0 X

0 1

X 0

0 1

B

C
0 X

0 1

X 0

0 1

B

C
0 X

0 1

X 0

0 1

B

C
0 X

0 1

X 0

0 1

B

C

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

B
3 primes around AB'C'D' minimum cover (3 primes)

BB
2 essential primes

B

Activity

Li t ll i i li t f th f ll i K

X 0 X 0

A

 List all prime implicants for the following K-map:

X 0 X 0

A

X 0

0 1

X 0

X 1
D

0 X X 0
BC BD AB AC’DCD’

X 0

0 1

X 0

X 1
D

0 X X 00 X

X 1

X 0

1 1

B

C
0 X

X 1

X 0

1 1

B

C

B

BDCD’ AC’D Which are essential prime implicants?

B

BDCD AC D

BDCD’ AC’D

 Which are essential prime implicants?

 What is the minimum cover?

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Implementations of two-level logic

S f Sum-of-products
 AND gates to form product terms (minterms)
 OR gate to form sum OR gate to form sum

 Product-of-sums
 OR gates to form sum terms (maxterms) OR gates to form sum terms (maxterms)
 AND gates to form product

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Two-level logic using NAND gates

 Replace minterm AND gates with NAND gates
 Place compensating inversion at inputs of OR gate

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Two-level logic using NAND gates (cont’d)

O OR gate with inverted inputs is a NAND gate
 de Morgan’s: A’ + B’ = (A • B)’

 Two level NAND NAND network Two-level NAND-NAND network
 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributedyp , g

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Two-level logic using NOR gates

O O Replace maxterm OR gates with NOR gates
 Place compensating inversion at inputs of AND gate

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Two-level logic using NOR gates (cont’d)

O AND gate with inverted inputs is a NOR gate
 de Morgan’s: A’ • B’ = (A + B)’

 Two level NOR NOR network Two-level NOR-NOR network
 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributedyp , g

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Two-level logic using NAND and NOR gates

O O NAND-NAND and NOR-NOR networks
 de Morgan’s law: (A + B)’ = A’ • B’ (A • B)’ = A’ + B’
 written differently: A + B = (A’ • B’)’ (A • B) = (A’ + B’)’ written differently: A + B = (A • B) (A • B) = (A + B)

 In other words ––
 OR is the same as NAND with complemented inputsp p
 AND is the same as NOR with complemented inputs
 NAND is the same as OR with complemented inputs
 NOR is the same as AND with complemented inputs

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Conversion between forms

C f f O f Convert from networks of ANDs and ORs to networks of
NANDs and NORs
 introduce appropriate inversions ("bubbles") introduce appropriate inversions (bubbles)

 Each introduced "bubble" must be matched by a
corresponding "bubble"
 conservation of inversions
 do not alter logic function
E l AND/OR t NAND/NAND

A A
NAND

 Example: AND/OR to NAND/NAND

B

C
Z

B

C
Z

NAND

NAND

NAND

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

D D
NAND

Conversion between forms (cont’d)

f f f Example: verify equivalence of two forms

A A

B

C
Z

B

C
Z

NAND

NAND

D D
NAND

Z = [(A • B)’ • (C • D)’]’

= [(A’ + B’) • (C’ + D’)]’[() ()]

= [(A’ + B’)’ + (C’ + D’)’]

= (A • B) + (C • D) 

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Conversion between forms (cont’d)

/O O / O Example: map AND/OR network to NOR/NOR network
A

BB

C

D

Z

NOR
₩A

₩B
NORA

D

NOR

₩C

Z
B

C
Z

Step 2Step 1

NOR
₩C

₩D
NORD

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

conserve
"bubbles"

conserve
"bubbles"

Conversion between forms (cont’d)

f f f Example: verify equivalence of two forms

A NOR
₩A

B

C
Z

NOR

NOR

₩B

Z

D
NOR

₩C

₩D

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

= { (A’ + B’) • (C’ + D’) }’

= (A’ + B’)’ + (C’ + D’)’

= (A • B) + (C • D) 

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Multi-level logic

C C G x = A D F + A E F + B D F + B E F + C D F + C E F + G
 reduced sum-of-products form – already simplified
 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even

exist!)
 25 wires (19 literals plus 6 internal wires)

 x = (A + B + C) (D + E) F + G
 factored form – not written as two-level S-o-P

1 3 i t OR t 2 2 i t OR t 1 3 i t AND t

A

 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 10 wires (7 literals plus 3 internal wires)

B
C

D
E

X

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

E

F
G

Level 1 Level 2 Level 3 Level 4
C

Conversion of multi-level logic to NAND gates
F A (B C D) B C’

original
AND-OR
network

A

C
D

B

B

F
 F = A (B + C D) + B C’

B
₩C

C
D

introduction and
conservation of

bubbles A
B

B
₩C

F

₩C

redrawn in terms
C
Dredrawn in terms

of conventional
NAND gates A

D

₩B

B
₩C

F

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

₩C

Conversion of multi-level logic to NORs

Level 1 Level 2 Level 3 Level 4
(C) C

A

C
D

B
Foriginal

AND-OR
k

 F = A (B + C D) + B C’

A
B
₩C

network

C

introduction and
conservation of

bubbles A

D
B

B

F

B

₩C

₩C
₩D

redrawn in terms
of conventional

NOR gates
₩A

₩D

B

₩B

F

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

₩B
C

Conversion between forms

 Example

A A

X
B
C
D

F

original circuit

X
B
C
D

F

add double bubbles to original circuit
invert all inputs of OR gate

A
A

X

₩D

B
C

F

₩D

B
C

F
₩X

X

insert inverters to eliminate
double bubbles on a wire

add double bubbles to
invert output of AND gate

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

AND-OR-invert gates

O f f O AOI function: three stages of logic — AND, OR, Invert
 multiple gates "packaged" as a single circuit block

possible implementation

A
B

logical concept

A
B B

C
D

Z
B

C
D

Z

NAND NAND InvertAND OR Invert

&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Conversion to AOI forms

G O f General procedure to place in AOI form
 compute the complement of the function in sum-of-products form
 by grouping the 0s in the Karnaugh map by grouping the 0s in the Karnaugh map

 Example: XOR implementation
 A xor B = A’ B + A B’

&A’

 AOI form:
 F = (A’ B’ + A B)’

&

&
+B’

A

B

F

B

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Examples of using AOI gates

 Example:
 F = A B + A C’ + B C’
 F = (A’ B’ + A’ C + B’ C)’ F = (A B + A C + B C)
 Implemented by 2-input 3-stack AOI gate

 F = (A + B) (A + C’) (B + C’)
 F = [(A’ + B’) (A’ + C) (B’ + C)]’
 Implemented by 2 input 3 stack OAI gate Implemented by 2-input 3-stack OAI gate

 Example: 4-bit equality function
 Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

each implemented in a single 2x2 AOI gate

Examples of using AOI gates (cont’d)

O f f

high if A0  B0
l if A0 B0

A0
B0 &

 Example: AOI implementation of 4-bit equality function

low if A0 = B0B0

A1

&
+

conservation of bubbles
A1
B1 &

&
+

NOR Z

if all inputs are low
then Ai = Bi, i=0,...,3

A2
B2

&

&
+

NOR Z

output Z is high

A3
B3

&
+

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

&

Summary for multi-level logic

 Advantages
 circuits may be smaller
 gates have smaller fan-in gates have smaller fan-in
 circuits may be faster

 Disadvantagesg
 more difficult to design
 tools for optimization are not as good as for two-level
 analysis is more complex

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

Time behavior of combinational networks

W f Waveforms
 visualization of values carried on signal wires over time
 useful in explaining sequences of events (changes in value)p g q (g)

 Simulation tools are used to create these waveforms
 input to the simulator includes gates and their connections

i t ti l th t i i t i l f input stimulus, that is, input signal waveforms
 Some terms

 gate delay — time for change at input to cause change at outputg y g p g p
 min delay – typical/nominal delay – max delay
 careful designers design for the worst case

 rise time — time for output to transition from low to high voltage rise time time for output to transition from low to high voltage
 fall time — time for output to transition from high to low voltage
 pulse width — time that an output stays high or stays low between changes

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Momentary changes in outputs

C f Can be useful — pulse shaping circuits
 Can be a problem — incorrect circuit operation

(glitches/hazards)
F

A B C D
(glitches/hazards)

 Example: pulse shaping circuit
 A’ • A = 0
 delays matter

F is not always 0
D remains high for

three gate delays after

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

F is not always 0
pulse 3 gate-delays wide

three gate delays after
A changes from low to high

Oscillatory behavior

++

resistor
A B

 Another pulse shaping circuit

close switch

open
switch

C
D

initially
undefined

close switch

open switch

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Hardware description languages

f Describe hardware at varying levels of abstraction
 Structural description

 textual replacement for schematic textual replacement for schematic
 hierarchical composition of modules from primitives

 Behavioral/functional descriptionBehavioral/functional description
 describe what module does, not how
 synthesis generates circuit for module

 Simulation semantics

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

HDLs

 Abel (circa 1983) - developed by Data-I/O Abel (circa 1983) developed by Data I/O
 targeted to programmable logic devices
 not good for much more than state machines
ISP (circa 1977) research project at CMU ISP (circa 1977) - research project at CMU
 simulation, but no synthesis

 Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
 similar to Pascal and C
 delays is only interaction with simulator
 fairly efficient and easy to write
 IEEE standard

 VHDL (circa 1987) - DoD sponsored standard
 similar to Ada (emphasis on re-use and maintainability) similar to Ada (emphasis on re use and maintainability)
 simulation semantics visible
 very general but verbose
 IEEE standard

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

 IEEE standard

Verilog

S Supports structural and behavioral descriptions
 Structural

 explicit structure of the circuit explicit structure of the circuit
 e.g., each logic gate instantiated and connected to others

 BehavioralBehavioral
 program describes input/output behavior of circuit
 many structural implementations could have same behavior
 e.g., different implementation of one Boolean function

 We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
l h ti h t t t l d i ti rely on schematic when we want structural descriptions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Structural model

module xor_gate (out, a, b);
input a, b;p
output out;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);

d t d1 (t1 bb)and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Simple behavioral model

C Continuous assignment

module xor_gate (out, a, b);
input a, b;
output out; simulation register -output out;
reg out;

assign #6 out = a ^ b;

simulation register -
keeps track of
value of signal

assign #6 out = a ^ b;

endmodule
delay from input changedelay from input change
to output change

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Simple behavioral model

module xor_gate (out, a, b);

 always block

input a, b;
output out;
reg out;g

always @(a or b) begin
#6 out = a ^ b;#6 out a b;

end

endmod le f h bl k dendmodule specifies when block is executed
ie. triggered by which signals

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Driving a simulation through a “testbench”

module testbench (x y);module testbench (x, y);
output x, y;
reg [1:0] cnt;

2-bit vector

initial begin
cnt = 0;

initial block executed
only once at start
of simulation

repeat (4) begin
#10 cnt = cnt + 1;
$display ("@ time=%d, x=%b, y=%b, cnt=%b",

of simulation

$ p y (@ , , y , ,
$time, x, y, cnt); end

#10 $finish;
end

print to a console
end

assign x = cnt[1];
i t[0]

directive to stop

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

assign y = cnt[0];
endmodule

simulation

Complete simulation

 Instantiate stimulus component and device to test in a
schematic

a zx

b
test-bench

x
y

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Comparator example

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal (A & B) | (A & B);assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endmodule

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

More complex behavioral model

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
input n0, n1, n2, n3, n4, n5, n6, n7, self;
output out;
reg out;reg out;
reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

always @(neighbors or self) begin
count = 0;
for (i = 0; i < 8; i = i+1) count = count + neighbors[i];

(3)out = (count == 3);
out = out | ((self == 1) & (count == 2));

end

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

endmodule

Hardware description languages vs.
programming languages

P t t Program structure
 instantiation of multiple components of the same type
 specify interconnections between modules via schematic
 hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

 Assignment
 continuous assignment (logic always computes)g (g y p)
 propagation delay (computation takes time)
 timing of signals is important (when does computation have its effect)

 Data structures Data structures
 size explicitly spelled out - no dynamic structures
 no pointers

 Parallelism Parallelism
 hardware is naturally parallel (must support multiple threads)
 assignments can occur in parallel (not just sequentially)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Hardware description languages and
combinational logic

f f Modules - specification of inputs, outputs, bidirectional, and
internal signals

 Continuous assignment - a gate’s output is a function of its Continuous assignment - a gate s output is a function of its
inputs at all times (doesn’t need to wait to be "called")

 Propagation delay- concept of time and delay in input affecting g y y g
gate output

 Composition - connecting modules together with wires
 Hierarchy - modules encapsulate functional blocks

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Working with combinational logic summary

 Design problems Design problems
 filling in truth tables
 incompletely specified functions
 simplifying two-level logic

 Realizing two-level logic
NAND and NOR networks NAND and NOR networks

 networks of Boolean functions and their time behavior
 Time behavior
 Hardware description languages
 Later

 combinational logic technologies
 more design case studies

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 48

