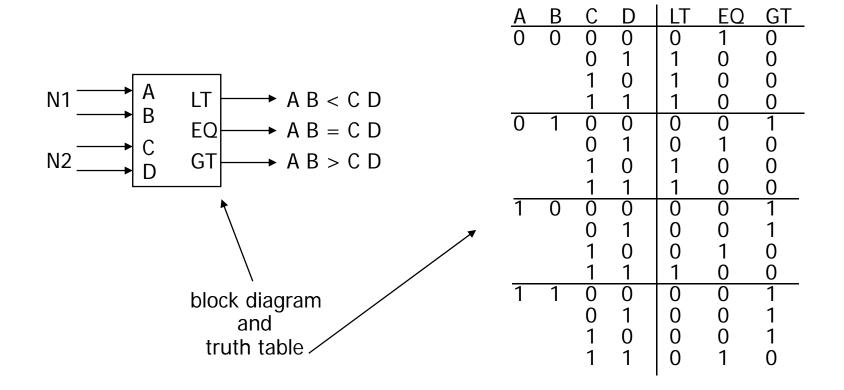
Working with combinational logic

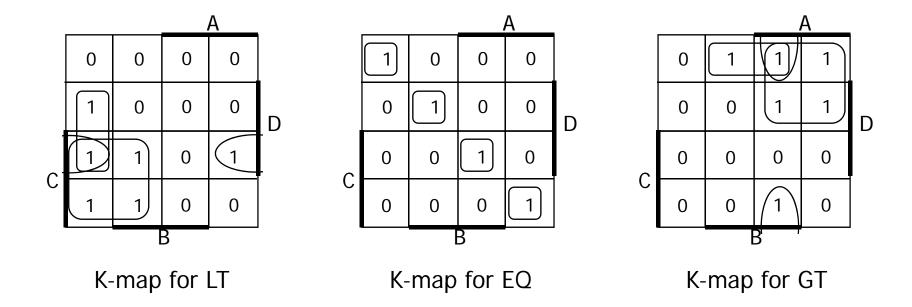
- Simplification
 - two-level simplification
 - exploiting don't cares
 - algorithm for simplification
- Logic realization
 - two-level logic and canonical forms realized with NANDs and NORs
 - multi-level logic, converting between ANDs and ORs
- Time behavior
- Hardware description languages

Design example: two-bit comparator



we'll need a 4-variable Karnaugh map for each of the 3 output functions

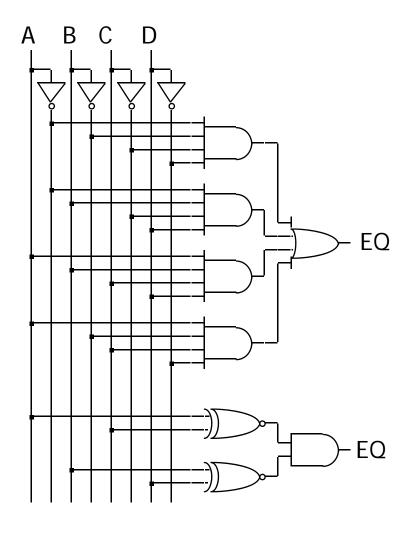
Design example: two-bit comparator (cont'd)



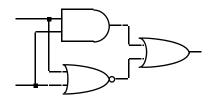
$$LT = A'B'D + A'C + B'CD$$
 $EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (A xnor C) \cdot (B xnor D)$
 $GT = BC'D' + AC' + ABD'$

LT and GT are similar (flip A/C and B/D)

Design example: two-bit comparator (cont'd)

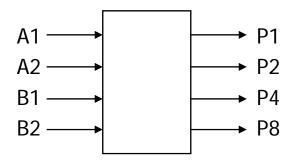


two alternative implementations of EQ with and without XOR



XNOR is implemented with at least 3 simple gates

Design example: 2x2-bit multiplier

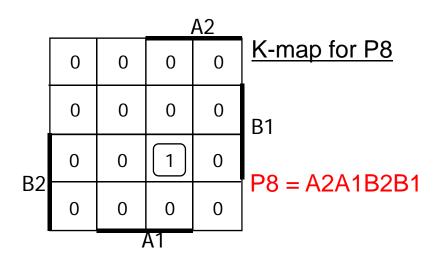


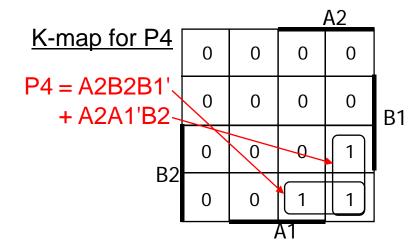
block diagram and truth table

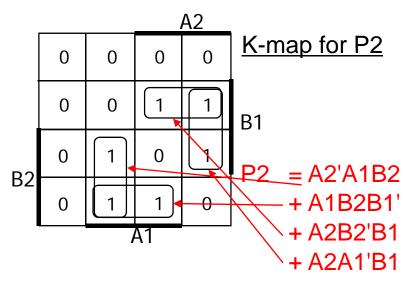
A 2	A 1	B2	B1	P8	P4	P2	P1
0	0	0	0	0	0	0	0
		0	1	0	0	0	0
		1	0	0	0	0	0
		1	1	0	0	0	0
0	1	0	0	0	0	0	0
		0	1	0	0	0	1
		1	0	0	0	1	0
		1	1	0	0	1	1
1	0	0	0	0	0	0	0
		0	1	0	0	1	0
		1	0	0	1	0	0
		1	1	0	1	1	0
1	1	0	0	0	0	0	0
		0	1	0	0	1	1
		1	0	0	1	1	0
		1	1	1	0	0	1

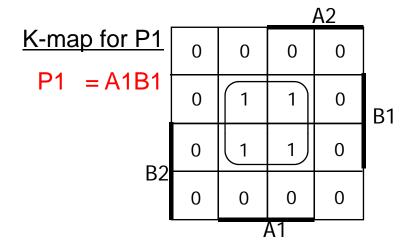
4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier (cont'd)

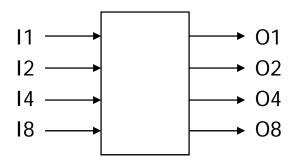








Design example: BCD increment by 1

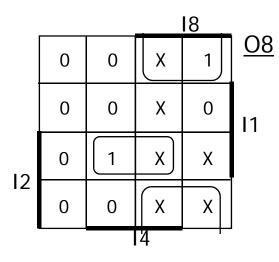


block diagram and truth table

18	14	12	I 1	08	04	02	01
0 0 0 0 0 0 0	0	0	0	0	0	0	1
0	0 0	1	0	0	0	1 1	0
0	0	1	1	Ŏ	1	Ó	1 0
Ŏ	Ĭ	Ò	Ó	Ŏ	1	0	Ĭ
0	1	0	1	0	1	1	0
0	1	1	1 0 1	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	Ŏ X	0	0
1	0	1	0 1	X X X	X X	X	X X
1 1	U 1	N	0	🗘	X	X X	X
1	1	0	1	X	X	X	X
1	1	1	Ó	X	X	X	X
<u>i</u>	i	i	1	X	X	X	X

4-variable K-map for each of the 4 output functions

Design example: BCD increment by 1 (cont'd)

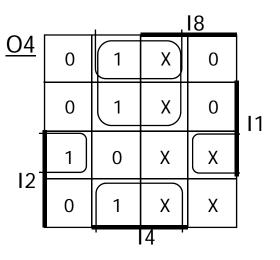


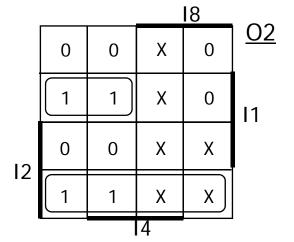
$$08 = 14 12 11 + 18 11'$$

$$O4 = I4 I2' + I4 I1' + I4' I2 I1$$

$$02 = 18' 12' 11 + 12 11'$$

$$01 = 11'$$





	,			I8 ,	_
<u>01</u>	1	1	Х	_1	
j	0	0	Χ	0] ₁
12	0	0	Χ	Х	
IΖ	1	1	Χ	X	
-	1		4	- 1	_

Definition of terms for two-level simplification

Implicant

 single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube

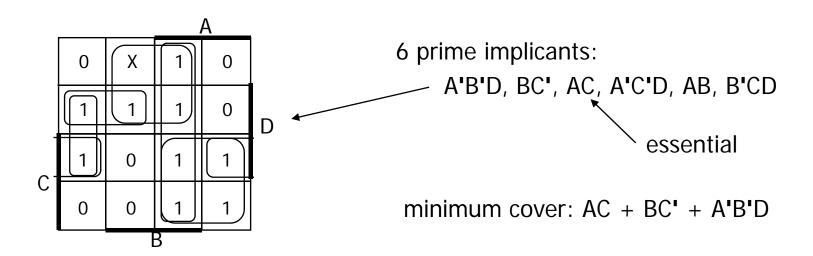
Prime implicant

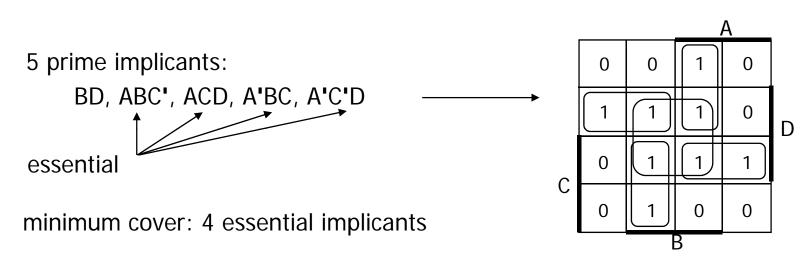
- implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
 - prime implicant is essential if it alone covers an element of ON-set
 - will participate in ALL possible covers of the ON-set
 - DC-set used to form prime implicants but not to make implicant essential

Objective:

- grow implicant into prime implicants (minimize literals per term)
- cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

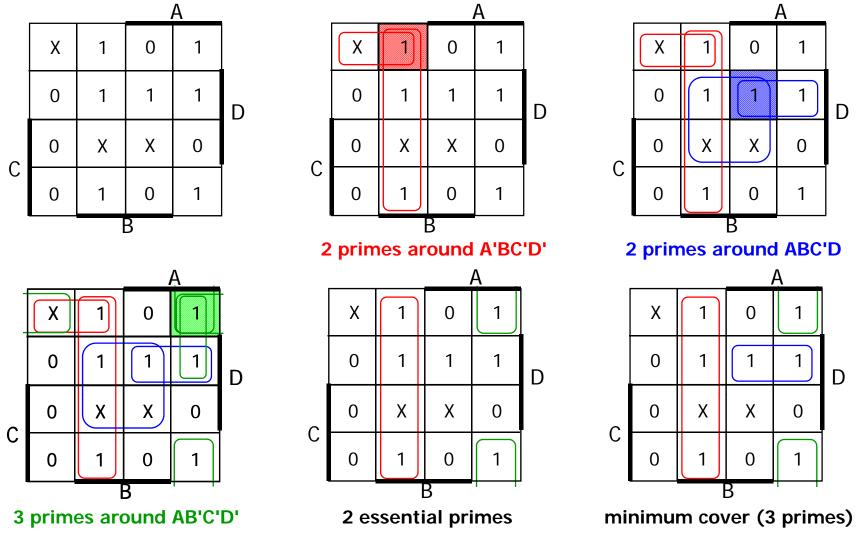




Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - consider top/bottom row, left/right column, and corner adjacencies
 - this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - Step 3: revisit the 1s in the K-map
 - if covered by single prime implicant, it is essential, and participates in final cover
 - 1s covered by essential prime implicant do not need to be revisited
 - Step 4: if there remain 1s not covered by essential prime implicants
 - select the smallest number of prime implicants that cover the remaining 1s

Algorithm for two-level simplification (example)



Activity

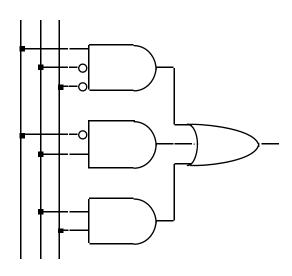
List all prime implicants for the following K-map:

			A			
	X	0	Х	0		
·	0	1	Χ	1	D	
С	0	Х	Χ	0		
	Χ	1	1	1		
•			3		•	

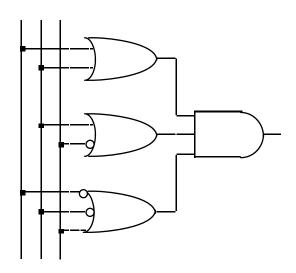
- Which are essential prime implicants?
- What is the minimum cover?

Implementations of two-level logic

- Sum-of-products
 - AND gates to form product terms (minterms)
 - OR gate to form sum



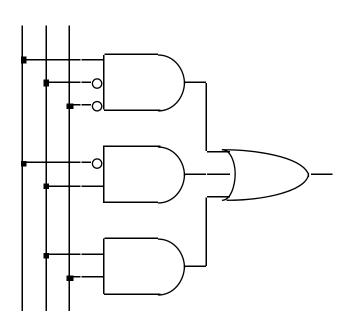
- Product-of-sums
 - OR gates to form sum terms (maxterms)
 - AND gates to form product

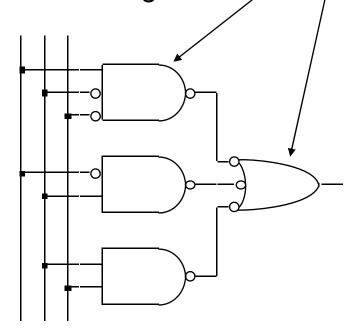


Two-level logic using NAND gates

Replace minterm AND gates with NAND gates

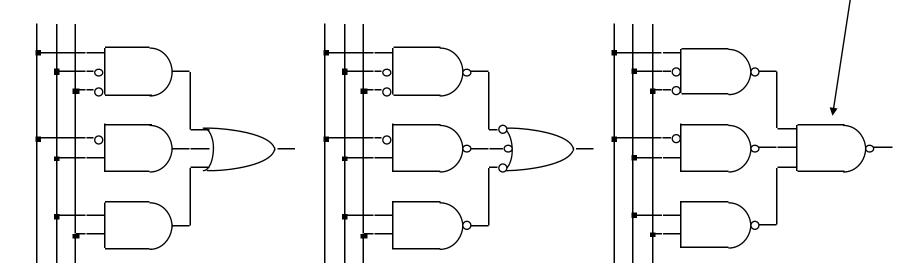
Place compensating inversion at inputs of OR gate





Two-level logic using NAND gates (cont'd)

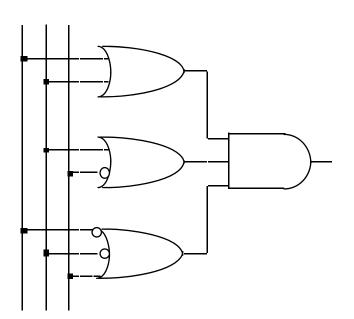
- OR gate with inverted inputs is a NAND gate
 - □ de Morgan's: $A' + B' = (A \cdot B)'$
- Two-level NAND-NAND network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

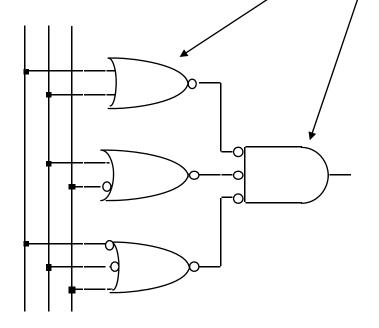


Two-level logic using NOR gates

Replace maxterm OR gates with NOR gates

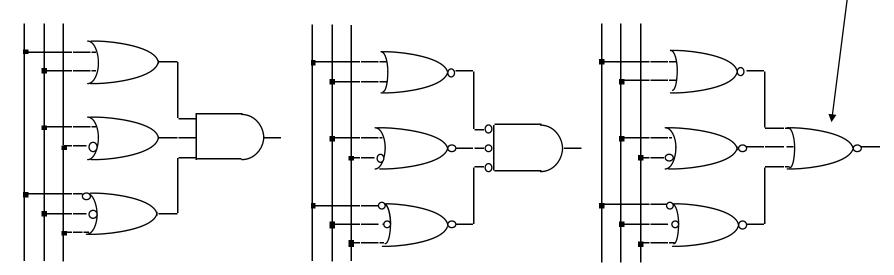
Place compensating inversion at inputs of AND gate





Two-level logic using NOR gates (cont'd)

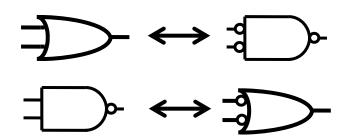
- AND gate with inverted inputs is a NOR gate
 - □ de Morgan's: A' B' = (A + B)'
- Two-level NOR-NOR network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed



Two-level logic using NAND and NOR gates

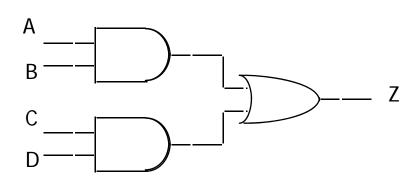
- NAND-NAND and NOR-NOR networks
 - □ de Morgan's law: (A + B)' = A' B'
- $(A \bullet B)' = A' + B'$
- written differently: A + B = (A' B')'
- $(A \bullet B) = (A' + B')'$

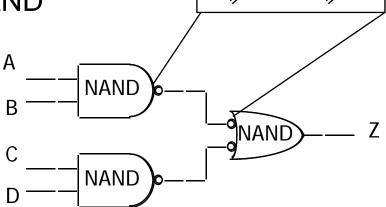
- In other words
 - OR is the same as NAND with complemented inputs
 - AND is the same as NOR with complemented inputs
 - NAND is the same as OR with complemented inputs
 - NOR is the same as AND with complemented inputs



Conversion between forms

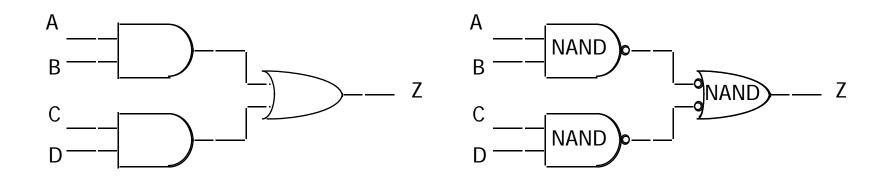
- Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
 - conservation of inversions
 - do not alter logic function
- Example: AND/OR to NAND/NAND





Conversion between forms (cont'd)

Example: verify equivalence of two forms

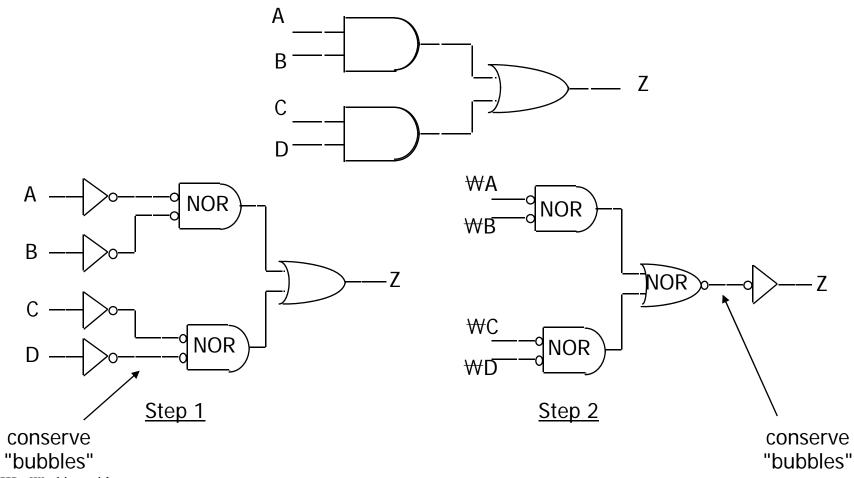


$$Z = [(A \cdot B)' \cdot (C \cdot D)']'$$

= $[(A' + B') \cdot (C' + D')]'$
= $[(A' + B')' + (C' + D')']$
= $(A \cdot B) + (C \cdot D) \checkmark$

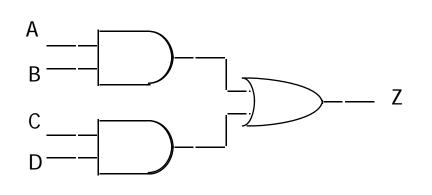
Conversion between forms (cont'd)

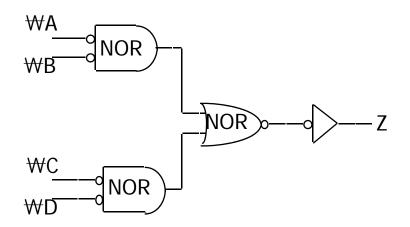
Example: map AND/OR network to NOR/NOR network



Conversion between forms (cont'd)

Example: verify equivalence of two forms





$$Z = \{ [(A' + B')' + (C' + D')']' \}'$$

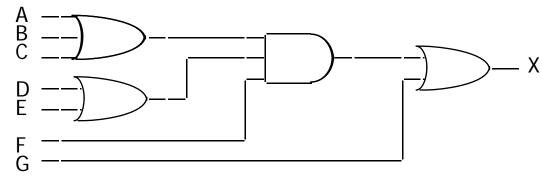
$$= \{ (A' + B') \cdot (C' + D') \}'$$

$$= (A' + B')' + (C' + D')'$$

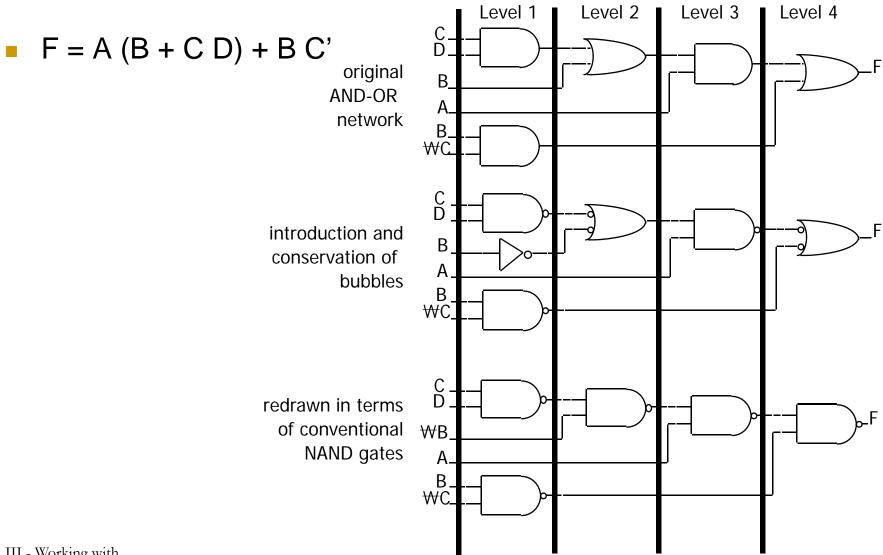
$$= (A \cdot B) + (C \cdot D) \checkmark$$

Multi-level logic

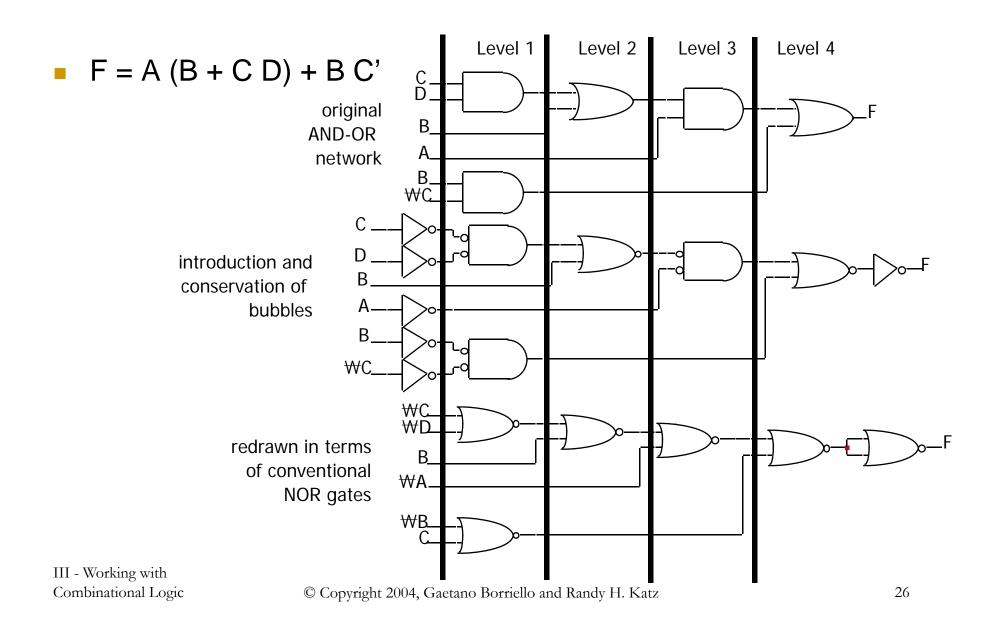
- x=ADF + AEF + BDF + BEF + CDF + CEF + G
 - reduced sum-of-products form already simplified
 - 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
 - 25 wires (19 literals plus 6 internal wires)
- x = (A + B + C) (D + E) F + G
 - □ factored form not written as two-level S-o-P
 - □ 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - 10 wires (7 literals plus 3 internal wires)



Conversion of multi-level logic to NAND gates

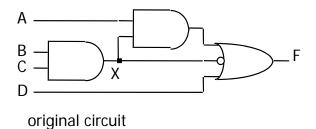


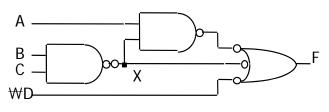
Conversion of multi-level logic to NORs



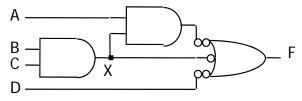
Conversion between forms

Example

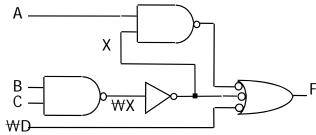




add double bubbles to invert output of AND gate



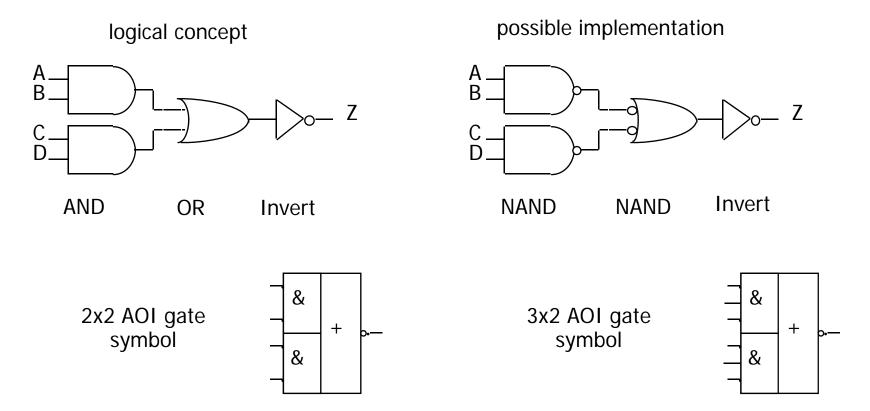
add double bubbles to invert all inputs of OR gate



insert inverters to eliminate double bubbles on a wire

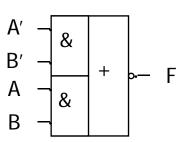
AND-OR-invert gates

- AOI function: three stages of logic AND, OR, Invert
 - multiple gates "packaged" as a single circuit block



Conversion to AOI forms

- General procedure to place in AOI form
 - compute the complement of the function in sum-of-products form
 - by grouping the 0s in the Karnaugh map
- Example: XOR implementation
 - \Box A xor B = A' B + A B'
 - AOI form:
 - F = (A' B' + A B)'



Examples of using AOI gates

Example:

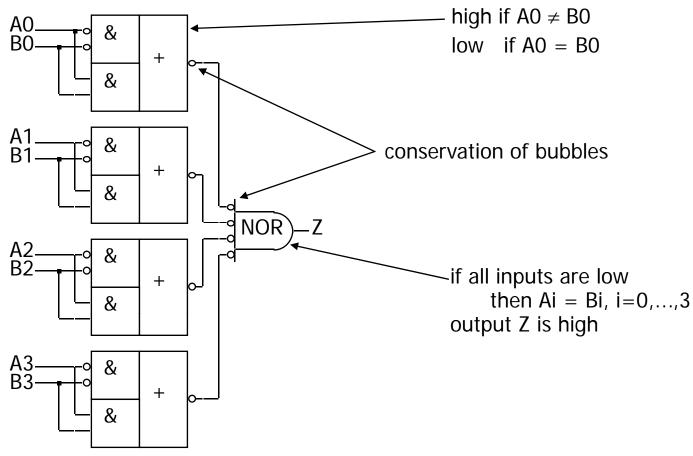
- \Box F = AB + AC' + BC'
- \Box F = (A' B' + A' C + B' C)'
- Implemented by 2-input 3-stack AOI gate
- \neg F = (A + B) (A + C') (B + C')
- \neg F = [(A' + B') (A' + C) (B' + C)]'
- Implemented by 2-input 3-stack OAI gate
- Example: 4-bit equality function

$$= Z = (A0 B0 + A0' B0')(A1 B1 + A1' B1')(A2 B2 + A2' B2')(A3 B3 + A3' B3')$$

each implemented in a single 2x2 AOI gate

Examples of using AOI gates (cont'd)

Example: AOI implementation of 4-bit equality function



Summary for multi-level logic

Advantages

- circuits may be smaller
- gates have smaller fan-in
- circuits may be faster
- Disadvantages
 - more difficult to design
 - tools for optimization are not as good as for two-level
 - analysis is more complex

Time behavior of combinational networks

Waveforms

- visualization of values carried on signal wires over time
- useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms
 - input to the simulator includes gates and their connections
 - input stimulus, that is, input signal waveforms

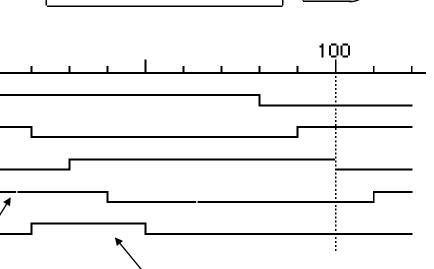
Some terms

- gate delay time for change at input to cause change at output
 - min delay typical/nominal delay max delay
 - careful designers design for the worst case
- rise time time for output to transition from low to high voltage
- fall time time for output to transition from high to low voltage
- pulse width time that an output stays high or stays low between changes

Momentary changes in outputs

- Can be useful pulse shaping circuits
- Can be a problem incorrect circuit operation (glitches/hazards)
- Example: pulse shaping circuit

delays matter



D remains high for three gate delays after A changes from low to high

А

В

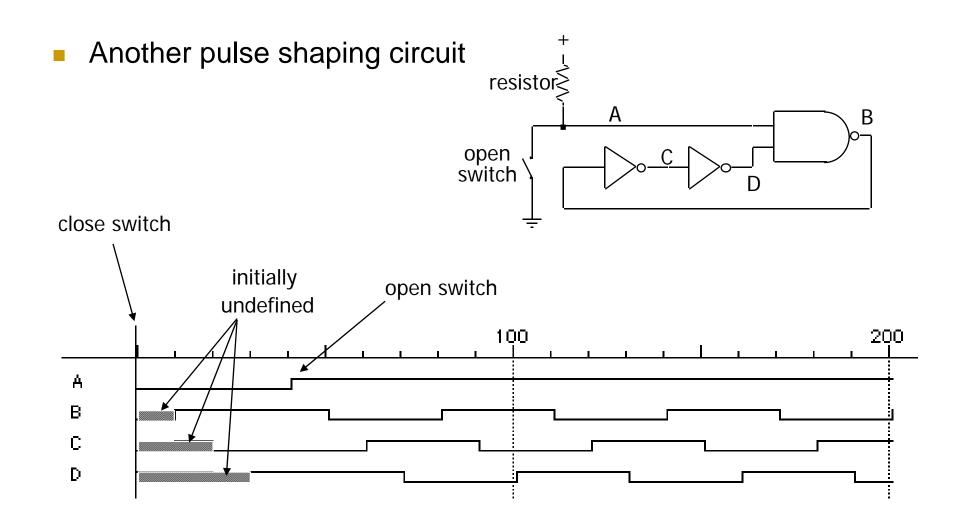
C

D

F

F is not always 0 pulse 3 gate-delays wide

Oscillatory behavior



Hardware description languages

- Describe hardware at varying levels of abstraction
- Structural description
 - textual replacement for schematic
 - hierarchical composition of modules from primitives
- Behavioral/functional description
 - describe what module does, not how
 - synthesis generates circuit for module
- Simulation semantics

HDLs

- Abel (circa 1983) developed by Data-I/O
 - targeted to programmable logic devices
 - not good for much more than state machines
- ISP (circa 1977) research project at CMU
 - simulation, but no synthesis
- Verilog (circa 1985) developed by Gateway (absorbed by Cadence)
 - similar to Pascal and C
 - delays is only interaction with simulator
 - fairly efficient and easy to write
 - IEEE standard
- VHDL (circa 1987) DoD sponsored standard
 - similar to Ada (emphasis on re-use and maintainability)
 - simulation semantics visible
 - very general but verbose
 - IEEE standard

Verilog

- Supports structural and behavioral descriptions
- Structural
 - explicit structure of the circuit
 - e.g., each logic gate instantiated and connected to others
- Behavioral
 - program describes input/output behavior of circuit
 - many structural implementations could have same behavior
 - e.g., different implementation of one Boolean function
- We'll mostly be using behavioral Verilog in Aldec ActiveHDL
 - rely on schematic when we want structural descriptions

Structural model

```
module xor_gate (out, a, b);
  input a, b;
  output out;
  wire abar, bbar, t1, t2;

inverter invA (abar, a);
  inverter invB (bbar, b);
  and_gate and1 (t1, a, bbar);
  and_gate and2 (t2, b, abar);
  or_gate or1 (out, t1, t2);
```

Simple behavioral model

Continuous assignment

```
module xor_gate (out, a, b);
  input a, b;
  output out;
  reg out;
  simulation register -
  keeps track of
  value of signal
  assign #6 out = a ^ b;
endmodule

  delay from input change
  to output change
```

Simple behavioral model

always block

```
module xor_gate (out, a, b);
  input        a, b;
  output       out;
  reg       out;

always @(a or b) begin
       #6 out = a ^ b;
  end
endmodule
```

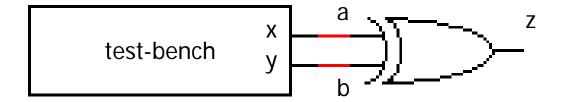
specifies when block is executed ie. triggered by which signals

Driving a simulation through a "testbench"

```
module testbench (x, y);
                                      2-bit vector
  output
                    х, у;
  reg [1:0]
                    cnt;
                                      initial block executed
   initial begin
                                      only once at start
     cnt = 0;
                                      of simulation
     repeat (4) begin
       #10 cnt = cnt + 1;
        $display ("@ time=%d, x=%b, y=%b, cnt=%b",
          $time, x, y, cnt); end
     #10 $finish;
                                            print to a console
   end
  assign x = cnt[1];
                                       directive to stop
  assign y = cnt[0];
                                       simulation
endmodule
III - Working with
```

Complete simulation

Instantiate stimulus component and device to test in a schematic



Comparator example

```
module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);
endmodule
```

More complex behavioral model

```
module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
  input
            n0, n1, n2, n3, n4, n5, n6, n7, self;
  output out;
  reg out;
  reg [7:0] neighbors;
  req [3:0] count;
  reg [3:0] i;
  assign neighbors = \{n7, n6, n5, n4, n3, n2, n1, n0\};
  always @(neighbors or self) begin
    count = 0:
    for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
    out = (count == 3);
    out = out | ((self == 1) & (count == 2));
  end
```

endmodule

Hardware description languages vs. programming languages

Program structure

- instantiation of multiple components of the same type
- specify interconnections between modules via schematic
- hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

Assignment

- continuous assignment (logic always computes)
- propagation delay (computation takes time)
- timing of signals is important (when does computation have its effect)

Data structures

- size explicitly spelled out no dynamic structures
- no pointers

Parallelism

- hardware is naturally parallel (must support multiple threads)
- assignments can occur in parallel (not just sequentially)

Hardware description languages and combinational logic

- Modules specification of inputs, outputs, bidirectional, and internal signals
- Continuous assignment a gate's output is a function of its inputs at all times (doesn't need to wait to be "called")
- Propagation delay- concept of time and delay in input affecting gate output
- Composition connecting modules together with wires
- Hierarchy modules encapsulate functional blocks

Working with combinational logic summary

- Design problems
 - filling in truth tables
 - incompletely specified functions
 - simplifying two-level logic
- Realizing two-level logic
 - NAND and NOR networks
 - networks of Boolean functions and their time behavior
- Time behavior
- Hardware description languages
- Later
 - combinational logic technologies
 - more design case studies