Working with combinational logic

Simplification
o two-level simplification
o exploiting don’t cares
o algorithm for simplification
Logic realization
o two-level logic and canonical forms realized with NANDs and NORs
o multi-level logic, converting between ANDs and ORs
Time behavior

Hardware description languages

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Design example: two-bit comparator

A B C D LT EQO GT

O 0 0 0 (O 1 O

0 1 1 0 0

1 O 1 0 0

NI |8 LT AB<CD 1 111 o o

c EQ——AB=CD M R
—>

N2 p GT—>AB>CD 1 0/1 0 O

1 1 1 0 0

1 0 0 O 0 0 1

O 1 (0 O 1

1 O 0 1 0

1111 0 o0

block diagram 1 1 8 liJ 8 8 i

and 1 O 0 0 1

truth table 1 1 0 1 0

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Design example: two-bit comparator (cont’d)

ol ol o] o ooo 0[1(111

D
Y| 1] o <l 0| o 0 0| oo o0
C ' C C
1 J 0| O ol o0]|oO 0| O E/l\ 0
B B '
K-map for LT K-map for EQ K-map for GT

LT = A'B'D+ AC + B'CD
EQ = ABCD + ABCD + ABCD + AB'CD’ = (A xnor C) = (B xnor D)
GT = BC'D'+ AC + ABD

LT and GT are similar (flip A/C and B/D)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Design example: two-bit comparator (cont’d)

A BC D
(Y Y
YIYIY Y

two alternative
) implementations of EQ
1 with and without XOR

ij :

XNOR is implemented with

) > at least 3 simple gates
AY EQ
)DJ:

D__
i:D—'ED

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Design example: 2x2-bit multiplier

Al —

Bl ——»

B2 ——»

A2 A1 B2 B1 | P8 P4 P2 Pl

O 0 0 O 0 0 0 0

0O 1 0 0 0 0

1 O 0 0 0 0

1 1 0 0 0 0

— P1 O 1 0 O 0 0 0 0

> P2 0O 1 0 0 0 1

1 O 0 0 1 0

— P4 1 1 |0 0 1 1

., P8 1 0 0 O 0 0 0 0

0O 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 0

1 1 0 O 0 0 0 0

block diagram 0 1 0 0 1 1
and 1 O 0 1 1 0
truth table 1 1 |1 0 0 1

III - Working with
Combinational Logic

4-variable K-map
for each of the 4
output functions

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Design example: 2x2-bit multiplier (cont’d)

A2 A2

ol ol ol o |KmapforP8 K-map for P4 ol ol ol o
P4 = A2B2B1'

0| o N 0| o

°1° B1 +A2A1‘BZ\\O\ 0 B1
\)
0] o 0 0 NOTo_|[1
B2 8 P8 = A2A1B2B1 B2 \\
olo|o]o o| o1l
AL AL

A2 A2

K-map for P2 K-map for P1

- P1 =Al1B1
0| o |la =l Oﬁqosl
P2 =A2'A1B2 B2
0 || 1 1]To\ + A1B2B1' O| 0| 0] O
Al \\+A282'Bl A
+ A2A1'B1

B2

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Design example: BCD increment by 1

I8 14 12 11 |08 04 02 01
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
~ 0 1 0 0 0 1 0 1
11 ' > 01 0O 1 0 11/0 1 1 0
12 — » 02 0 1 1 0 0 1 1 1
14 . 04 0 1 1 1 1 0 0 0
> g 1 0 0 0 1 0 0 1
I8 —— ———» 08 1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
block diagram % % % Cl) ;(;(;(;(
and
truth table

4-variable K-map for each of
the 4 output functions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Design example: BCD increment by 1 (cont’d)

18 , 18
0 0 X 1) % % 0 " 1 7 0
0 0 X 0 0 l 1 X 0
11 — 11
OEE « 08=141211+18 11 __1]0 X[X.
12 — O4=1412"+1411'+ 14 1211 12)
0 0 X _XW 0 1 X X
T O2=18 1211+ 12 11’ 7
18 Ol=11 18
02 %L
0] 0 X 0 1 1 X 1)

iannn I
4 ' 4 '

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

Definition of terms for two-level simplification

Implicant

o single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

Prime implicant

o implicant that can't be combined with another to form a larger subcube

Essential prime implicant

o prime implicant is essential if it alone covers an element of ON-set

o will participate in ALL possible covers of the ON-set

o DC-set used to form prime implicants but not to make implicant essential

Obijective:
o grow implicant into prime implicants
(minimize literals per term)

o cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Examples to illustrate terms

6 prime implicants:

D

essential

/ A'B'D, BC', AC<C'D, AB, B'CD

0| 0|1 1) minimum cover: AC + BC' + A'B'D

5 prime implicants:

BD, ABC', ACD, A'BC, A'C'D

v

="

essential
minimum cover: 4 essential implicants

A
0| 0 1} 0
N\
|1 flJ PJ 0
o (1|1 1\
ofl1]l o] o
-/

III - Working with

Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Algorithm for two-level simplification

Algorithm: minimum sum-of-products expression from a Karnaugh map

o Step 1: choose an element of the ON-set

o Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

o Repeat Steps 1 and 2 to find all prime implicants

o Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

o Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Algorithm tor two-level simplification (example)

A A
x| 1ol 1 0o 1 (X 1)|
0 1 1 1 0 1 1 1 0 F
D D
0 X X 0 0 X X 0 0 LX
C C C
0 1 0 1 0 1 0 1 0 1 0 1
. \—/_ _/
B B B
2 primes around A'BC'D’ 2 primes around ABC'D
A A A
(] 1]\ o || 1 x | 1]] o {1J x |[1]| o {1J
0 (1 1 1 0 1 1 1 0 1 ‘ 1 1 \
—1D D D
0 LX X 0 0 X X 0 0 X X 0
C C C
0 1 0 ‘ 1 \ 0 1 0 ‘ 1 \ 0 1 0 ‘ 1 \
B T T B I 1 B I I
3 primes around AB'C'D’ 2 essential primes minimum cover (3 primes)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Activity

List all prime implicants for the following K-map:
A

Which are essential prime implicants?

What is the minimum cover?

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Implementations of two-level logic

Sum-of-products
o AND gates to form product terms (minterms) -0

o OR gate to form sum L ODD_

D
Product-of-sums ' -—-_D

o OR gates to form sum terms (maxterms) : -
o AND gates to form product r—DZ)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Two-level logic using NAND gates

Replace minterm AND gates with NAND gates /
Place compensating inversion at inputs of OR gate

——0
-0

——0
-0

Q

@

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Two-level logic using NAND gates (cont’d)

OR gate with inverted inputs is a NAND gate
o de Morgan’s: A'+B =(A*B)
Two-level NAND-NAND network

o inverted inputs are not counted
o In atypical circuit, inversion is done once and signal distributed

-0
-0

T

-0
-0

1

>

Wl
Ssje

JUL

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Two-level logic using NOR gates

Replace maxterm OR gates with NOR gates

Place compensating inversion at inputs of AND gate

o T

III - Working with
Combinational Logic

e HED S s o = RS

Z_DJ | H—Dj

-

© Copyright 2004, Gaetano Borriello and Randy H. Katz

17

Two-level logic using NOR gates (cont’d)

AND gate with inverted inputs is a NOR gate
o de Morgan’s: A B =(A+B)
Two-level NOR-NOR network

o inverted inputs are not counted

o In atypical circuit, inversion is done once and signal distributed

o e, e
o D (T -]
i=Ee F{:D =

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Two-level logic using NAND and NOR gates

NAND-NAND and NOR-NOR networks

o de Morgan'slaw: (A+B) = A B’ (A B)
o written differently: A+B = (A «B’) (A *B)
In other words —

o ORis the same as NAND with complemented inputs
2 AND is the same as NOR with complemented inputs
2 NAND is the same as OR with complemented inputs
2 NOR is the same as AND with complemented inputs

J > < » 1 > >33 >
__>o-<—>:D— DH‘J—

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

A+ B
(A" + By

Conversion between forms

Convert from networks of ANDs and ORSs to networks of

NANDs and NORs

o Introduce appropriate inversions ("bubbles")
Each introduced "bubble" must be matched by a

corresponding "bubble"
o conservation of inversions
o do not alter logic function

Example: AND/OR to NAND/NAND

)
E::D

III - Working with
Combinational Logic

e

C

P>

NAND Jo——

D——

NAND }o——|

© Copyright 2004, Gaetano Borriello and Randy H. Katz

—INAND

20

Conversion between forms (cont’d)

Example: verify equivalence of two forms

Z=[(A=+B)y «(C D) T
=[(A+B) « (C+D) 7]
=[(A+B) + (C+D)]
= (A*B) +(C D) Vv

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Conversion between forms (cont’d)

Example: map AND/OR network to NOR/NOR network

/;::j——L

1 o o>z

e "
D —{>o {NoR)~ —gNOR)-
WD
/ Step 1 Step 2
conserve conserve
"bubbles" "bubbles"

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Conversion between forms (cont’d)

Example: verify equivalence of two forms

)

)

III - Working with
Combinational Logic

e

NOR j—

NOR)—

Z={ [(A+BY+(C+D) T}

=1

(A+B) - (C+D) ¥
(A +B) + (C' + DY
(A«B)+ (C-D v

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Multi-level logic

x=ADF + AEF+ BDF + BEF + CDF + CEF + G

o reduced sum-of-products form — already simplified

o 6 X 3-input AND gates + 1 x 7-input OR gate (that may not even
exist!)

o 25 wires (19 literals plus 6 internal wires)
X=(A+B+C)(D+E)F + G

o factored form — not written as two-level S-0-P

o 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
o 10 wires (7 literals plus 3 internal wires)

EED_t: SR .
S T

O Mg OW>

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

24

Conversion of multi-level logic to NAND gates

Level 1

Level 2 Level 3 Level 4
C
F=AB+CD)+BC D = e
original ¢ [__DF
AND-OR
A
network
B
W
C
introduction and 3 |‘ ‘TD_F
conservation of A
bubbles .
WC

C
redrawn in terms D :l - ‘ - .
of conventional WB | B _DF
NAND gates A
B
wef]
III - Working with

Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Conversion of multi-level logic to NORs

Level 1 Level 2 Level 3 Level 4
F:A(B+CD)+BC’ CD
D —_
original —D ——DF
network

AND-OR B { “_'

C__

introduction and D__
conservation of B

bubbles A——

B___|

WC___

redrawn in terms
of conventional
NOR gates

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Conversion between forms

Example
A A
N _F B — ‘ _F
i C X
D D
original circuit add double bubbles to

invert all inputs of OR gate

= [}wmﬂﬁ

add double bubbles to
invert output of AND gate

III - Working with

insert inverters to eliminate
double bubbles on a wire

Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

27

AND-OR-invert gates

AOI function: three stages of logic — AND, OR, Invert
o multiple gates "packaged" as a single circuit block

logical concept possible implementation

5 - 5] .,
C_jr D_D C_— D_D

D_ D_ >’r
OR Invert NAND NAND Invert
& J&
2x2 AOI gate - + 3x2 AOI gate — +
symbol 2B o symbol P -

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Conversion to AOI forms

General procedure to place in AOI form
o compute the complement of the function in sum-of-products form
o by grouping the Os in the Karnaugh map
Example: XOR implementation
0 AxorB=A'B + AP’
o AOI form:
F=(A'B + AB)

Ro

W > >
J

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

29

Examples of using AOI gates

Example:

o F=AB+AC +BC

o F=(AB +A'C+B C)

o Implemented by 2-input 3-stack AOI gate

a F=(A+B)(A+C)(B+C)
o F=[A"+B)(A"+C) (B + Q)]
o Implemented by 2-input 3-stack OAl gate

Example: 4-bit equality function
o Z=(A0BO0 + A0’ BO’)(A1 B1 + A1’ B1')(A2 B2 + A2’ B2')(A3 B3 + A3’ B3))

each implemented in a single 2x2 AOI gate

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Example: AOI implementation of 4-bit equality function

A0

Examples of using AOI gates (cont’d)

O
B

1

Al

A2

- high if AO = BO
low if AO=B0
BN
conservation of bubbles

A3——

III - Working with

INOR)—Z
e \
N if all inputs are low
then Ai = Bi, i=0
output Z is high
o

Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

31

Summary for multi-level logic

Advantages

o circuits may be smaller

o gates have smaller fan-in

o circuits may be faster

Disadvantages

o more difficult to design

o tools for optimization are not as good as for two-level
o analysis is more complex

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

32

Time behavior of combinational networks

Waveforms
o visualization of values carried on signal wires over time
o useful in explaining sequences of events (changes in value)

Simulation tools are used to create these waveforms
o input to the simulator includes gates and their connections
o input stimulus, that is, input signal waveforms

Some terms

o gate delay — time for change at input to cause change at output
min delay — typical/nominal delay — max delay
careful designers design for the worst case

o rise time — time for output to transition from low to high voltage
o fall time — time for output to transition from high to low voltage
o pulse width — time that an output stays high or stays low between changes

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Momentary changes in outputs

Can be useful — pulse shaping circuits

Can be a problem — incorrect circuit operation
(glitches/hazards)

Example: pulse shaping circuit LH>° . D" : DO—DFD =

o AlA=0
o delays matter

m 2 0O Mmoo 3

\ F is not always 0

D remains high for
three gate delays after

A changes from low to high pulse 3 gate-delays wide

III - Working with

Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Oscillatory behavior

: . . +
Another pulse shaping circuit It
resistore
R ¥
open ! C
switch 1 | 7° |’>O_D|_
close switch =
initially open switch
undeﬂned
e . 290
/ 1 1 1 1
& I
B 1 [1 [I
I: | 1 1 ['
L 1 | 1 | |_
III - Working with
35

Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Hardware description languages

Describe hardware at varying levels of abstraction

Structural description

o textual replacement for schematic

o hierarchical composition of modules from primitives
Behavioral/functional description

o describe what module does, not how

o synthesis generates circuit for module

Simulation semantics

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

36

HDI.s

Abel (circa 1983) - developed by Data-1/O
o targeted to programmable logic devices
o not good for much more than state machines

ISP (circa 1977) - research project at CMU
o Ssimulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
o similar to Pascal and C

o delays is only interaction with simulator

o fairly efficient and easy to write

o |EEE standard

VHDL (circa 1987) - DoD sponsored standard

o similar to Ada (emphasis on re-use and maintainability)
o Simulation semantics visible

o very general but verbose

o |EEE standard

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Verilog

Supports structural and behavioral descriptions

Structural

o explicit structure of the circuit

o e.g., each logic gate instantiated and connected to others
Behavioral

o program describes input/output behavior of circuit

o many structural implementations could have same behavior

o e.g., different implementation of one Boolean function

We’'ll mostly be using behavioral Verilog in Aldec ActiveHDL
o rely on schematic when we want structural descriptions

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

38

Structural model

modulle Xxor

input
output
wire

inverter
inverter
and_gate
and_gate
or_gate

endmodule

III - Working with
Combinational Logic

gate (out, a, b);

a, b;

out;

abar, bbar, tl, t2;

iInvA (abar, a);
invB (bbar, b);
andl (tl1, a, bbar);
and2 (t2, b, abar);

orl (out, tl, t2);

© Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Simple behavioral model

Continuous assignment

module xor gate (out, a,
input a, b;

reg

assign #6 out = a ™ b;

b);

output out; / simulation register -
out; keeps track of

value of signal

endmodule \\\\\\\\\\\\\

III - Working with
Combinational Logic

delay from input change
to output change

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Simple behavioral model

always block

module xor gate (out, a, b);

input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ™ Dby
end

endmodule specifies when block is executed
le. triggered by which signals

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Driving a simulation through a “testbench”

module testbench (X, y);

output X, VY; 2-bit vector
reg [1:0] cnt;’/////////

S . —Tini
initial begin initial block executed
— N- only once at start
cnt = O;

) of simulation
repeat (4) begin
#10 cnt = cnt + 1;
$display ('@ time=%d, x=%b, y=%b, cnt=%b",
$time, X, y, cnt); end

#10 $Finish; I
print to a console
end
ass i gn x = cnt[1]; directive to stop
assign y = cnt[0]; simulation
endmodule

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Complete simulation

Instantiate stimulus component and device to testin a
schematic

<

X Z
test-bench

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Comparator example

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (A & ~-B);

assign #3 Alarger (A & ~B);

assign #3 Blarger (-A & B);
endmodule

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

44

More complex behavioral model

module li1fe
input
output
reg
reg [7:0]}
reg [3:0]}
reg [3:0]}

assign nei

always @(n
count =
for (1 =
out
out

end

1~

ou

endmodule

III - Working with
Combinational Logic

(n0O, nl1, n2, n3, n4, n5, n6, n7, self, out);
n0, nl, n2, n3, n4, n5, n6, n7, self;

out;

out;

neighbors;

count;

i,

ghbors = {n7, n6, n5, n4, n3, n2, nl, nO};
eighbors or self) begin

0;
0; i < 8; i = i+1) count = count + neighbors[i];

(count == 3);

t | ((self == 1) & (count == 2));

© Copyright 2004, Gaetano Borriello and Randy H. Katz 45

Hardware description languages vs.
programming languages

Program structure

o instantiation of multiple components of the same type

o specify interconnections between modules via schematic

o hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

Assignment

o continuous assignment (logic always computes)

o propagation delay (computation takes time)

o timing of signals is important (when does computation have its effect)
Data structures

o size explicitly spelled out - no dynamic structures

0 No pointers

Parallelism

o hardware is naturally parallel (must support multiple threads)

o assignments can occur in parallel (not just sequentially)

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Hardware description languages and
combinational logic

Modules - specification of inputs, outputs, bidirectional, and
Internal signals

Continuous assignment - a gate’s output is a function of its
Inputs at all times (doesn’t need to wait to be "called")

Propagation delay- concept of time and delay in input affecting
gate output

Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Working with combinational logic summary

Design problems

o filling in truth tables

o incompletely specified functions

o simplifying two-level logic
Realizing two-level logic

2 NAND and NOR networks

o networks of Boolean functions and their time behavior
Time behavior

Hardware description languages
Later

o combinational logic technologies

o more design case studies

III - Working with
Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

48

