
Digital Local Loop Technologies

- Integrated Services Digital Network (ISDN)
 - Handles voice and data
 - Relatively high cost for low bandwidth
- Digital Subscriber Line (DSL)
- Cable modems
- Hybrid Fiber Coax

Asymmetric Digital Subscriber Line (ADSL)

- Popular DSL variant
- Runs over conventional POTS wiring
- Higher capacity downstream
- Uses frequencies above POTS

Illustration Of ADSL Wiring

- Downstream can reach 6.4 Mbps
- Upstream can reach 640 Kbps

Cable Modems

- Send/receive over CATV wiring
- Use FDM
- Group of subscribers in neighborhood share bandwidth

Hybrid Fiber Coax

- Wiring scheme for cable to allow digital access Optical fiber
 - Highest bandwidth
 - Extends from central office to neighborhood concentration points
- Coaxial cable
 - Less bandwidth
 - Extends from neighborhood concentration point to individual subscribers (e.g., residence)

Summary

- Technologies exist that span long distances
 - Leased analog lines (require modems)
 - Leased digital circuits (require DSU/CSUs)
- Digital circuits
 - Available from phone company
 - Cost depends on distance and capacity
 - Popular capacities called T1 and T3
 - Fractional T1 also available

Summary (continued)

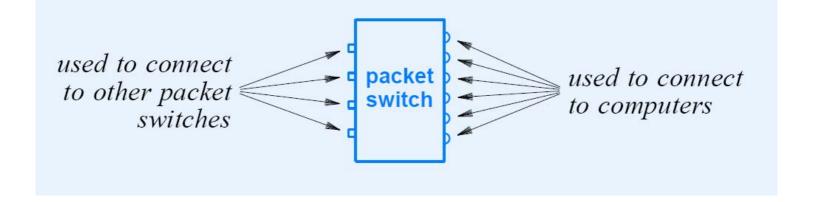
- High capacity circuits available
 - Popular capacities known as OC-3, OC-12
- Local loop refers to connection between central office and subscriber
- Local loop technologies include
 - DSL (especially ADSL)
 - Cable modems

PART VII

Wide Area Networks (WANs), Routing, and Shortest Paths

Motivation

- Connect multiple computers
- Span large geographic distance
- Cross public right-of-way
 - Streets
 - Buildings
 - Railroads

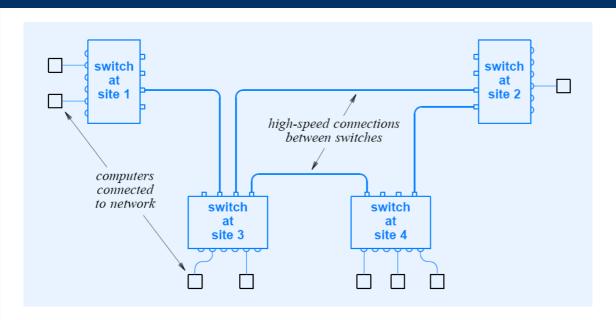

Building Blocks

- Point-to-point long-distance connections
- Packet switches

Packet Switch

- Hardware device
- Connects to
 - Other packet switches
 - Computers
- Forwards packets
- Uses addresses

Illustration Of A Packet Switch



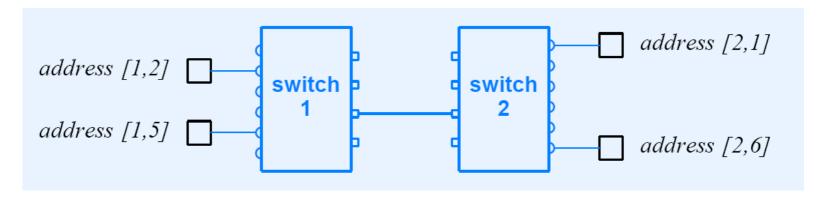
- Special-purpose computer system
 - CPU
 - Memory
 - I/O interfaces
 - Firmware

Building A WAN

- Place one or more packet switches at each site
- Interconnect switches
 - LAN technology for local connections
 - Leased digital circuits for long-distance connections

Illustration Of A WAN

- Interconnections depend on
 - Estimated traffic
 - Reliability needed


Store And Forward

- Basic paradigm used in packet switched network
- Packet
 - Sent from source computer
 - Travels switch-to-switch
 - Delivered to destination
- Switch
 - Stores packet in memory
 - Examines packet's destination address
 - Forwards packet toward destination

Addressing In A WAN

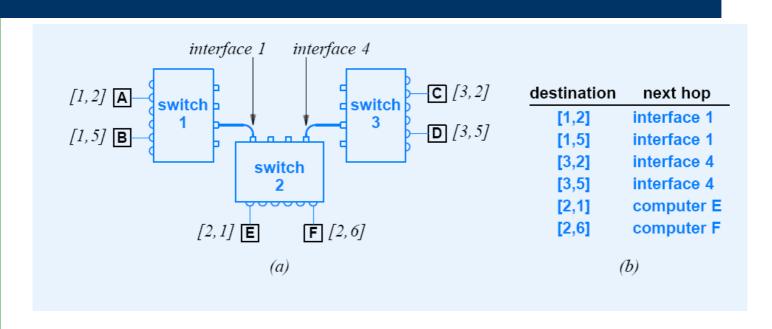

- Need
 - Unique address for each computer
 - Efficient forwarding
- Two-part address
 - Packet switch number
 - Computer on that switch

Illustration Of WAN Addressing

- Two-part address encoded as integer
 - High-order bits for switch number
 - Low-order bits for computer number

Next-Hop Forwarding

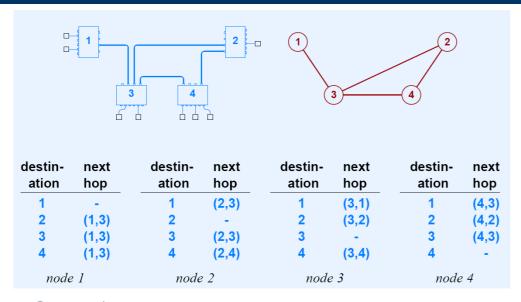
- Performed by packet switch
- Uses table of routes
- Table gives next hop

Forwarding Table Abbreviations

Destination Next Hop

(1, anything) interface 1

(3, anything) interface 4

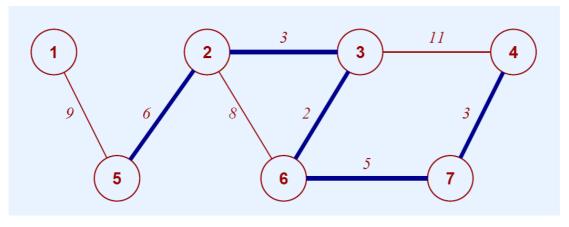

(2, anything) local computer

- Many entries point to same next hop
- Can be condensed (default)
- Improves lookup efficiency

Source Of Routing Table Information

- Manual
 - Table created by hand
 - Useful in small networks
 - Useful if routes never change
- Automatic routing
 - Software creates/updates table
 - Needed in large networks
 - Changes routes when failures occur

Relationship Of Routing To Graph Theory



- Graph
- Node models switch
- Edge models connection

Shortest Path Computation

- Algorithms from graph theory
- No central authority (distributed computation)
- A switch
 - Must learn route to each destination
 - Only communicates with directly attached neighbors

Illustration Of Minimum Weight Path

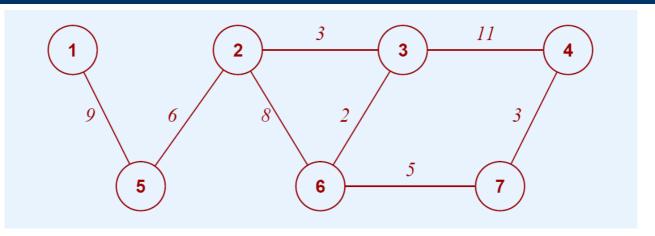
- Label on edge represents "distance"
- Possible distance metric
 - Geographic distance
 - Economic cost
 - Inverse of capacity
- Darkened path is minimum 4 to 5

Algorithms For Computing Shortest Paths

- Distance Vector (DV)
 - Switches exchange information in their routing tables
- Link-state
 - Switches exchange link status information
- Both used in practice

Distance Vector

- Periodic, two-way exchange between neighbors
- During exchange, switch sends
 - List of pairs
 - Each pair gives (destination, distance)
- Receiver
 - Compares each item in list to local routes
 - Changes routes if better path exists

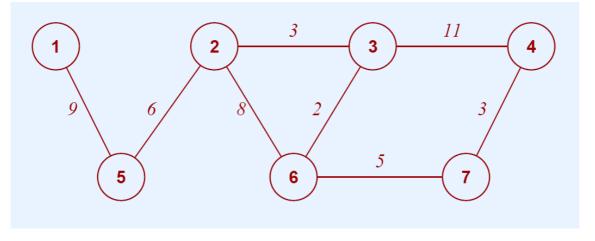

Distance Vector Algorithm

```
Given:
      a local routing table, a weight for each link that connects to another switch, and an incoming routing
          message
Compute:
      an updated routing table
Method:
      Maintain a distance field in each routing table entry;
      Initialize routing table with a single entry that has the destination equal to the local packet switch.
      the next-hop unused, and the distance set to zero;
      Repeat forever {
             wait for the next routing message to arrive over the network from a neighbor; Let N be the sending
             switch; for each entry in the message {
                   Let V be the destination in the entry and let D be the distance;
                   Compute C as D plus the weight assigned to the link over which the message arrived;
                   Examine and update the local routing table:
                   if (no route exists to 1) {
                          add an entry to the local routing table for destination
                          V with next-hop N and distance C;
                   } else if (a route exists that has next-hop M) {
                         replace the distance in existing route with C;
                   \} else if (a route exists with distance greater than C) {
                         change the next-hop to N and distance to C;
```

Distance Vector Intuition

- Let
 - N be neighbor that sent the routing message
 - / be destination in a pair
 - D be distance in a pair
 - C be D plus the cost to reach the sender
- If no local route to V or local route has cost greater than C, install a route with next hop N and cost C
- Else ignore pair

Example Of Distance Vector Routing



- Consider transmission of one DV message
- Node 2 sends to nodes 3, 5, and 6
- Node 6 installs cost 8 route to node 2
- Later, node 3 sends update
- Node 6 changes route to make node 3 the next hop for destination 2

Link-State Routing

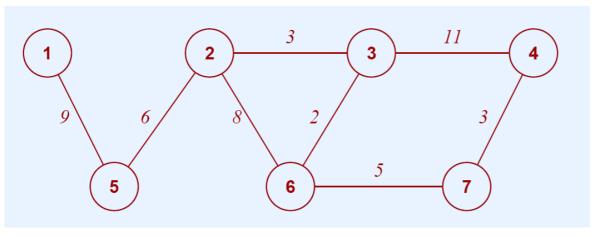
- Overcomes instabilities in DV
- Pair of switches periodically
 - Test link between them
 - Broadcast link status message
- Switch
 - Receives status messages
 - Computes new routes
 - Uses Dijkstra's algorithm

Example Of Link-State Information

- Assume nodes 2 and 3
 - Test link between them
 - Broadcast information
- Each node
 - Receives information
 - Recomputes routes as needed

Dijkstra's Shortest Path Algorithm

- Input
 - Graph with weighted edges
 - Node n
- Output
 - Set of shortest paths from n to each node
 - Cost of each path
- Called Shortest Path First (SPF) algorithm


Dijkstra's Algorithm

```
Given:
       a graph with a nonnegative weight assigned to each edge and a designated source node
Compute:
       the shortest distance from the source node to each other node and a next-hop routing table
Method:
       Initialize set S to contain all nodes except the source node;
       Initialize array D so that D[v] is the weight of the edge from the source to v if such an edge exists, and infinity
otherwise;
       Initialize entries of R so that R[v] is assigned v if an edge exists from the source to v, and zero otherwise;
       while (set S is not empty) {
              choose a node u from S such that D[u] is minimum;
              if (D[u] is infinity) {
                     no path exists to nodes in S; quit;}
              delete u from set S;
              for each node v such that (u,v) is an edge {
                     if (v is still in S) {
                             c = D[u] + weight(u,v);
                             if (c < D[v]) {
                             R[v] = u;
                             D[v] = c;
```

Algorithm Intuition

- Start with self as source node
- Move outward
- At each step
 - Find node u such that it
 - * Has not been considered
 - * Is "closest" to source
 - Compute
 - * Distance from *u* to each neighbor *v*
 - * If distance shorter, make path from u go through v

Result Of Dijkstra's Algorithm

- Example routes from node 6
 - To 3, next hop = 3, cost = 2
 - To 2, next hop = 3, cost = 5
 - To 5, next hop = 3, cost = 11
 - To 4, next hop = 7, cost = 8

Early WAN Technologies

ARPANET

- Historically important in packet switching
- Fast when invented; slow by current standards
- X.25
 - Early commercial service
 - Still used
 - More popular in Europe

Recent WAN Technologies

- SMDS
 - Offered by phone companies
 - Not as popular as Frame Relay
- Frame Relay
 - Widely used commercial service
 - Offered by phone companies
- ATM

Two Primary Performance Measures

- Delay
- Throughput

Delay

- Time required for one bit to travel through the network
- Three types (causes)
 - Propagation delay
 - Switching delay
 - Queuing delay
- Intuition: "length" of the pipe

Throughput

- Number of bits per second that can be transmitted
- Capacity
- Intuition: "width" of the pipe

Components Of Delay

- Fixed (nearly constant)
 - Propagation delay
 - Switching delay
- Variable
 - Queuing delay
 - Depends on throughput

Relationship Between Delay And Throughput

- When network idle
 - Queuing delay is zero
- As load on network increases
 - Queuing delay rises
- Load defined as ratio of throughput to capacity
 - Called utilization

Relationship Between Delay And Utilization

- Define
 - D0 to be the propagation and switching delay
 - U to be the utilization $(0 \le U \le 1)$
 - D to be the total delay
- Then

$$D = (1 - U) / D0$$

High utilization known as congestion

Practical Consequence

Any network that operates with a utilization approaching 100% of capacity is doomed.

Delay-Throughput Product

- Delay
 - Time to cross network
 - Measured in seconds
- Throughput
 - Capacity
 - Measured in bits per second
- Delay 'Throughput
 - Measured in bits
 - Gives quantity of data "in transit"

Summary

- Network can be
 - Public
 - Private
- Virtual Private Network
 - Uses public network
 - Connects set of private sites
 - Addressing and routing guarantee isolation

Summary (continued)

- Networks are
 - Connectionless
 - Connection-Oriented
- Connection types
 - Permanent Virtual Circuit
 - Switched Virtual Circuit
- Two performance measures
 - Delay
 - Throughput

Summary (continued)

- Delay and throughput interact
- Queueing delay increases as utilization increases
- Delay 'Throughput
 - Measured in bits
 - Gives total data "in transit"

PART IX

Protocols and Protocol Layering

Protocol

- Agreement about communication
- Specifies
 - Format of messages
 - Meaning of messages
 - Rules for exchange
 - Procedures for handling problems

Need For Protocols

- Hardware is low level
- Many problems can occur
 - Bits corrupted or destroyed
 - Entire packet lost
 - Packet duplicated
 - Packets delivered out of order