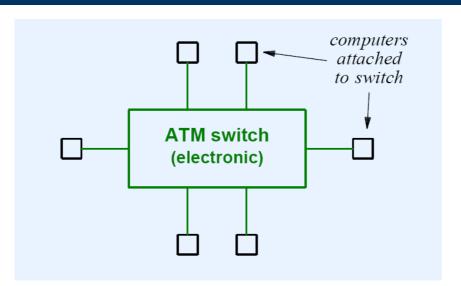
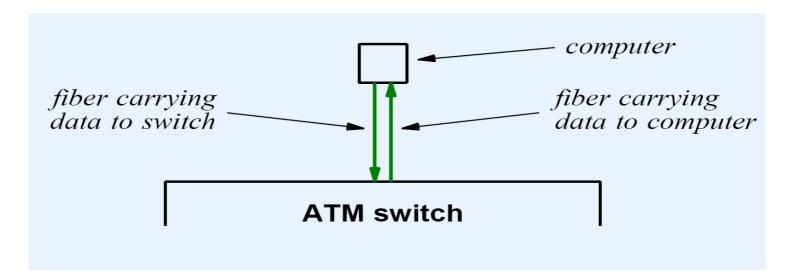

Illustration Of Failure Recovery

- Normal operation uses one of two rings
- Second ring used for loopback during failure


Token Passing Ring Technologies

- ProNet-10
 - Operated at 10 Mbps
- IBM Token Ring
 - Originally operated at 4 Mbps
 - Later version operated at 16 Mbps
- Fiber Distributed Data Interconnect (FDDI)
 - Operates at 100 Mbps
- All are now virtually obsolete

Example Of A Physical Star Topology


- Asynchronous Transfer Mode (ATM)
- Designed by telephone companies
- Intended to accommodate
 - Voice
 - Video
 - Data

ATM

- Building block known as ATM switch
- Each station connects to switch
- Switches can be interconnected

Details Of ATM Connection

- Full-duplex connections
- Two fibers used

ATM Characteristics

- High data rates (e.g. 155 Mbps)
- Fixed size packets
 - Called cells
 - Important for voice
- Cell size is 53 octets
 - 48 octets of data
 - 5 octets of header

Summary

- Local Area Networks
 - Designed for short distance
 - Use shared media
 - Many technologies exist
- Topology refers to general shape
 - Bus
 - Ring
 - Star

- Address
 - Unique number assigned to station
 - Put in frame header
 - Recognized by hardware
- Address forms
 - Unicast
 - Broadcast
 - Multicast

- Type information
 - Describes data in frame
 - Set by sender
 - Examined by receiver
- Frame format
 - Header contains address and type information
 - Payload contains data being sent

- Currently popular LAN technology
 - Ethernet (bus)
- Older LAN technologies
 - IBM Token Ring
 - FDDI (ring)
 - ATM (star)

- Wiring and topology
 - Can distinguish
 - * Logical topology
 - * Physical topology (wiring)
 - Hub allows
 - * Star-shaped bus
 - * Star-shaped ring

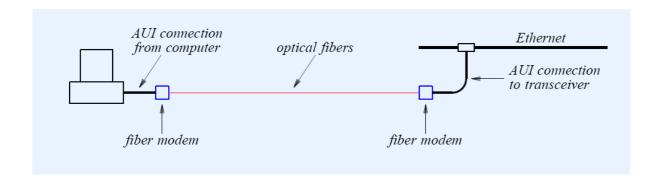
PART V

Extending Networks (Repeaters, Bridges, Switches)

Motivation

Recall

- Each LAN technology has a distance limitation
- Example: CSMA/CD cannot work across arbitrary distance


However

- Users desire arbitrary distance connections
- Example: two computers across a corporate campus are part of one workgroup

Extension Techniques

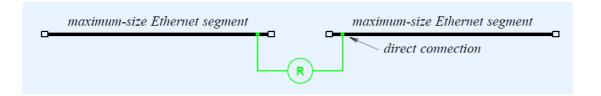
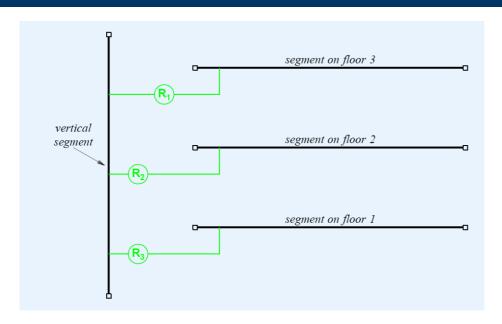

- Must not violate design assumptions
- Often part of original design
- Example technique
 - Use connection with lower delay than copper

Illustration Of Extension For One Computer

- Optical fiber
 - Has low delay
 - Has high bandwidth
 - Can pass signals within specified bounds

Repeater



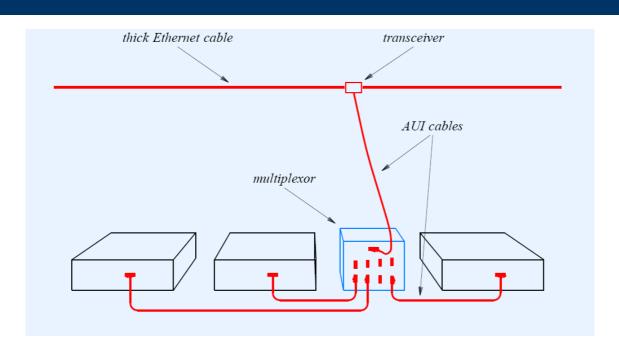
- Hardware device
- Connects two LAN segments
- Copies signal from one segment to the other
- Connection can be extended with Fiber Optic Intra-Repeater Link

Repeater (continued)

- Amplifies signals from one segment and sends to the other
- Operates in two directions simultaneously
- Propagates noise and collisions

Repeaters And The Original Ethernet Wiring Scheme

- Designed for office
- Only two repeaters between any pair of stations


Hub

- Physically
 - Small electronic device
 - Has connections for several computers (e.g., 4 or 20)
- Logically
 - Operates on signals
 - Propagates each incoming signal to all connections
 - Similar to connecting segments with repeaters
 - Does not understand packets
- Extremely low cost

Connection Multiplexing

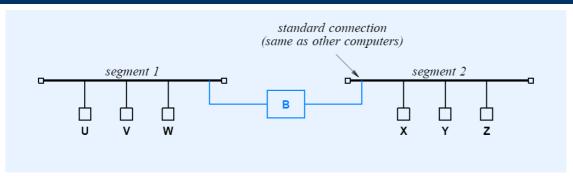
- Concept
 - Multiple stations share one network connection
- Motivation
 - Cost
 - Convenience of wiring
- Hardware device required

Illustration Of Connection Multiplexing

- Multiplexing device attached to network
- Stations attach to device
- Predates hubs

Modern Equivalent Of Connection Multiplexing

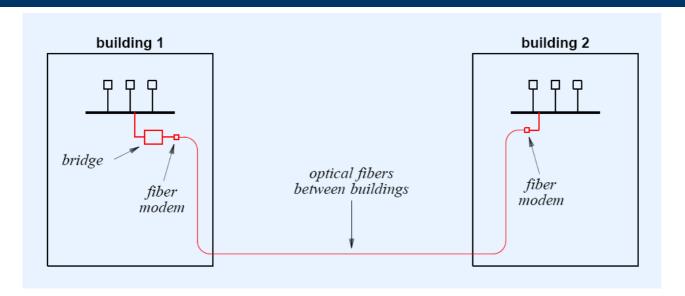
- Hubs used now
- Connections on a hub
 - One for each attached computer
 - One for another hub
- Multiple hubs
 - Can be interconnected in a daisy chain
 - Operate as one giant hub
 - Called stacking


Bridge

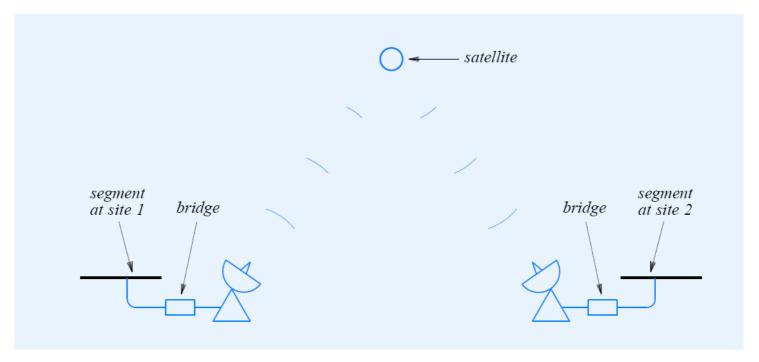
- Hardware device
- Connects two LAN segments
- Forwards frames
- Does not forward noise or collisions
- Learns addresses and filters
- Allows independent transmission

Bridge Algorithm

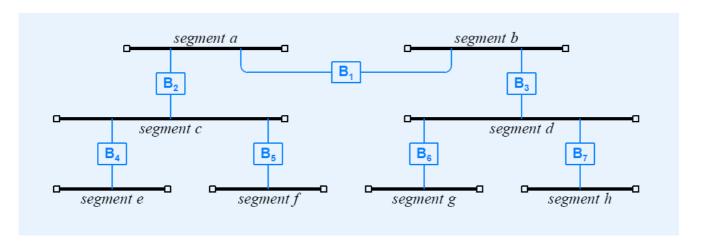
- Listen in promiscuous mode
- Watch source address in incoming frames
- Make list of computers on each segment
- Only forward if necessary
- Always forward broadcast/multicast


Illustration Of A Bridge

Event	Segment 1 List	Segment 2
List		
Bridge boots	_	_
U sends to V	U	_
V sends to U	U, V	_
Z broadcasts	U, V	Z
Y sends to V	U, V	Z, Y
Y sends to X	U, V	Z, Y
X sends to W	U, V	Z, Y, X
W sends to Z	U, V, W	Z, Y, X


Bridge uses source address to learn location of computers Learning is completely automated

Extending A Bridge

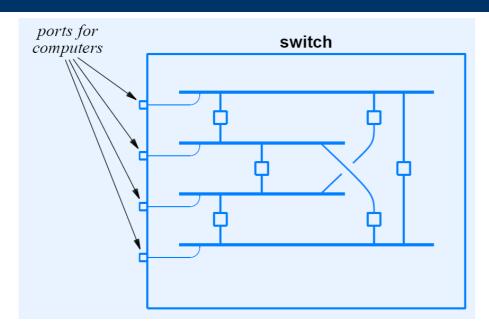

- Typically optical fiber
- Can span buildings

Satellite Bridging

Can span arbitrary distance

Apparent Problem

- Complex bridge connections may not be apparent
- Adding one more bridge inadvertently introduces a cycle
- Consider a broadcast frame


Spanning Tree Algorithm

- Allows cycles
- Used by all bridges to
 - Discover one another
 - Break cycle(s)
- Known as Distributed Spanning Tree (DST)

Switch

- Electronic device
- Physically similar to a hub
- Logically similar to a bridge
 - Operates on packets
 - Understands addresses
 - Only forwards when necessary
- Permits separate pairs of computers to communicate at the same time
- Higher cost than hub

Conceptual Switch Function

- Conceptual operation
 - One LAN segment per host
 - Bridge interconnects each pair of segments
- NOT an actual implementation

Summary

- LANs
 - Have distance limitations
 - Can be extended
- Fiber can be used between computer and LAN
- Repeater
 - Connects two LAN segments
 - Repeats and amplifies all signals
 - Forwards noise and collisions

Bridge

- Connects two LAN segments
- Understands frames
- Uses addresses
- Does not forward noise or collisions
- Allows simultaneous transmission on segments

Hub

- Central facility in star-shaped network
- Operates like a repeater

Switch

- Central facility in star-shaped network
- Operates like a set of bridged segments

PART VI

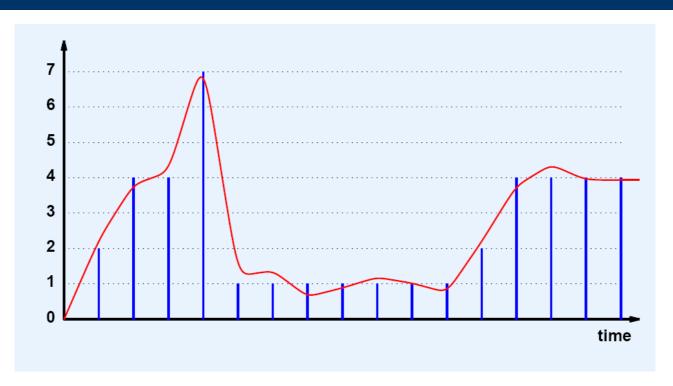
Long-Distance and Local Loop Digital Connection Technologies

Motivation

- Connect computers across
 - Large geographic distance
 - Public right-of-way
 - * Streets
 - * Buildings
 - * Railroads

Long-Distance Transmission Technologies

- General solution: lease transmission facilities from telephone company
 - Point-to-point topology
 - NOT part of conventional telephone system
 - Copper, fiber, microwave, or satellite channels available
 - Customer chooses analog or digital

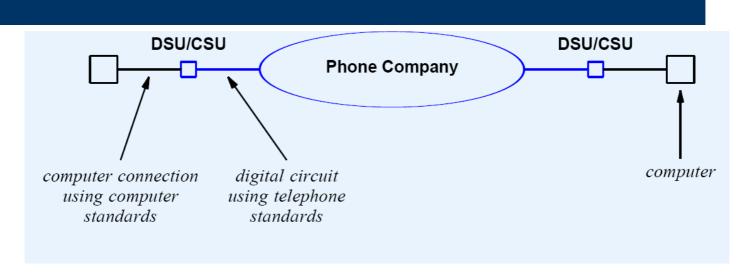

Equipment For Leased Connections

- Analog circuit
 - Modem required at each end
- Digital circuit
 - DSU/CSU required at each end

Digital Circuit Technology

- Developed by telephone companies
- Designed for use in voice system
 - Analog audio from user's telephone converted to digital format
 - Digital format sent across network
 - Digital format converted back to analog audio

Illustration Of Digitized Signal



- Pick nearest digital value for each sample
- Telephone standard known as Pulse Code Modulation(PCM)

DSU/CSU

- Performs two functions; usually a single "box"
- Needed because telephone industry digital encoding differs from computer industry digital encoding
- DSU portion
 - Translates between two encodings
- CSU portion
 - Terminates line
 - Allows for maintenance

Illustration Of DSU/CSU

- Cost of digital circuit depends on
 - Distance
 - Capacity

Telephone Standards For Digital Circuits

- Specified by the telephone industry in each country
- Differ around the world
- Are known by two-character standard name
- Note: engineers refer to circuit capacity as "speed"

Example Circuit Capacities

Name	Bit Rat	te	Voice cal	ls	Location
_	0.064	Mbps	1		
T1	1.544	Mbps	24		North America
T2	6.312	Mbps	96		North America
T3	44.736	6 Mbps	672		North America
E1	2.048 Mbps	30		Europe	
E2	8.448 Mbps	120		Europe	
E3	34.368 Mbps	480		Europe	

Note: T2 not popular


Common Digital Circuit Terminology

- Most common in North America
 - T1 circuit
 - T3 circuit (28 times T1)
- Also available
 - Fractional T1 (e.g., 64 Kbps circuit)

Inverse Multiplexing

- Combines two or more circuits
- Produces intermediate capacity circuit
- Special hardware required
 - Needed at each end
 - Called inverse multiplexor

Example Of Inverse Multiplexing

- Can alternate between circuits for
 - Every other bit
 - Every other byte

High-Capacity Digital Circuits

- Also available from phone company
- Use optical fiber
- Electrical standards called Synchronous Transport Signal (STS)
- Optical standards called Optical Carrier (OC)

High-Capacity Circuits

Standard Name	Optical Name	Bit Rate	Voice Calls
<u> Name</u>	Ivaille	Nate	Calls
STS-1	OC-1	51.840 Mbps	810
STS-3	OC-3	155.520 Mbps	2430
STS-12	OC-12	622.080 Mbps	9720
STS-24	OC-24	1,244.160 Mbps	19440
STS-48	OC-48	2,488.320 Mbps	38880

- STS- is standard for electrical signals
- OC- is standard for optical signals
- Engineers usually use OC- terminology for everything
- OC-3 popular

Local Loop

- Telephone terminology
- Refers to connection between residence/business and central office
- Crosses public right-of-way
- Originally for analog POTS (Plain Old Telephone Service)