Contemporary Logic Design
Computer Organization

Chap 11 : 68 pages
Chap 12 : 49 pages

Chapter #11. Computer Organization

*R.H. Katz Transparency No. 11-1

) _ Contemporary Logic Design
Motivation Computer Organization

* Computer Design as an appilication of digitai iogic design procedure
* Computer = Processing Unit + Memory System
* Processing Unit = Control + Datapath

* Control = Finite State Machine
Inputs = Machine Instruction, Datapath Conditions (Branch cond.)
Outputs = Register Transfer Control Signals (to Datapath, Registers)

Instruction Interpretation = Instruction Fetch, Decode, Execute

* Datapath = Functional Units + Registers
Functional Units = ALU, Multipliers, Dividers, etc.

Registers = Program Counter, Shifters, Storage Registers

*R.H. Katz Transparency No. 11-2

_ Contemporary Logic Design
Chapter Overview Computer Organization

* Datapath interconnection strategies:

Point-to-Point, Single Bus, Multiple Busses

«Structure of the State Diagram/ASM Chart to describe controller FSM

ASM (Algorithmic state machine — Program flow chart)

*R.H. Katz Transparency No. 11-3

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram View

/ Address
Central
Processing\ Processor /Read/erte Memory
Unit [Data o System
(CPU)
/ Control
Signals
Control Datapath
Data
< Inputs /

Instruction Unit Execution Unit
Instruction fetch Functional Units
and interpretation and Registers
FSM

*R.H. Katz Transparency No. 11-4

Contemporary Logic Design
Structure of a Computer Computer Organization

Example of Instruction Sequencing
Instruction: Add Rx to Ry and place result in Rz

Step 1: Fetch the (Add instruction) from Memory to Instruction Reg

Step 2: Decode Instruction
Instruction in IR is an ADD
Source operands are Rx, Ry

Destination operand is Rz (Usually Pipelined)

Step 3: Execute Instruction
Move Rx, Ry to ALU
Set up ALU to perform ADD function
ADD Rx to Ry

Move ALU result to Rz

*R.H. Katz Transparency No. 11-5

Contemporary Logic Design
Structure of a Computer Computer Organization

Instruction Types

* Data Manipulation

Add, Subtract, etc.

* Data Staging
Load/Store data to/from memory

Register-to-register move

* Control
Conditional/unconditional branches

subroutine call and return

*R.H. Katz Transparency No. 11-6

Contemporary Logic Design
Structure of a Computer Computer Organization

Control

Elements of the Control Unit (aka Instruction Unit):

Iso k
Standard FSM things: (also known as)

State Register
Next State Logic

Output Logic (datapath control signaling)

Plus Additional "Control" Registers:
Instruction Register (IR)

Program Counter (PC)

*R.H. Katz Transparency No. 11-7

Contemporary Logic Design

Structure of a Computer Computer Organization
Control
A/l,//
Reset
Control State Diagram Initialize
Machine

* Reset

* Fetch Instructi

Different Sequence
for Each Instruction
Branch

Type
Load/ Register-
_ - Store to-Register
Instructions partitioped
into three classes: ¢
Branch
* Branch Not Taken
Branch
* Load/Store Takeny
* Register-to-Register

Housekeeping

* Decode —=

* Execute —|

*R.H. Katz Transparency No. 11-8

Contemporary Logic Design

Structure of a Computer Computer Organization
Datapath
cin
Arithmetic Circuits *
constructed in]
hierarchical and Aln EA Sum
iterative fashion Bin

Each bit in datapath / E{!.IZ

is functionally identical

Y
4-bit

8-bit S

16-bit cn Y \ D Cout
32-bit

Datapaths / / \ \

Hierarchical Construction of
Full Adder

*R.H. Katz Transparency No. 11-9

Contemporary Logic Design

Structure of a Computer Computer Organization
Datapath
CO+—|ALUl« Cl CO+—|ALUp ALU} Cl
I | |
— AC «— AC — AC
RO RO || | RO
S R1|™ [] S R1|_] r—RL|]
Register file R .,
S R2 [[| R2 || | R2 |
R3[| R3] R3]
1 bit wide 2 bits wide

iterate to build n-bit wide
datapaths

*R.H. Katz Transparency No. 11-10

Bit Slice Concept

Contemporary Logic Design
Structure of a Computer Computer Organization

Datapath

ALU Block Diagram

32 32

N

Operation\¢ {32

Cout S

*R.H. Katz Transparency No. 11-11

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram/Register Transfer View

Store Path

Single Accumulator
Machine Load Path ¢

Load or not \WA(;l ¢ |
Control Flow ——
AC = AC <op>Mem paaFm \
ata ow 9 A \/ B Branch Memory
| N bits wide
"single address]

. ! o \ Memory M words
Instructions FSM \. ALU Address
AC implicit operand MAR
| Opcode_‘ S 4 \
lA R | c

Instruction Path Fetch

Arrowed Lines

represent dataflows Memory Address Register

Hold address during memory
others are control flows accesses

*R.H. Katz Transparency No. 11-12

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram/Register Transfer View

Placement of Data and Instructions in Memory:
* Data and instructions mixed in memory: Princeton Architecture

* Data and instructions in separate memory: Harvard Architecture

Princeton architecture simpler to implement

Harvard architecture has certain performance advantages:

overlap instruction fetch with operand fetch

We assume the more common Princeton architecture throughout

*R.H. Katz Transparency No. 11-13

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram/Register Transfer View

1. Instruction Fetch:
Move PC to MAR
Initiate a memory read sequence

Move data from memory to IR

2. Instruction Decode:

Op code bits of IR are input to control FSM

Rest of IR bits encode the operand address

*R.H. Katz Transparency No. 11-14

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram/Register Transfer View

3. Operand Fetch:
Move operand address from IR to MAR

Initiate a memory read sequence

4. Instruction Execute:

Data available on load path

Move data to ALU input

Configure ALU to perform ADD operation

Move S result to AC

5. Housekeeping:

Increment PC to point at next instruction

*R.H. Katz Transparency No. 11-15

Contemporary Logic Design
Structure of a Computer Computer Organization

Block Diagram/Register Transfer View

Control: Transfer data from one register to another
Assert appropriate control signals

' - Register to Register moves
Register transfer nOtatIOn/ g g
>

_ PC — MAR; -- move PC to MAR

Instruction fetch: ~ Memory Read; .- assert Memory READ signal
Memory — IR; -- load IR from Memory

Instruction Decode: IF IR<op code>=ADD _FROM_ MEMORY
THEN

Instruction Execution: iR<addr> - MAR,; -- move operand addr to MAR

Memory Read,; -- assert Memory READ signal
Memory — ALU B; -- gate Memory to ALU B
AC > ALUA; --gate ACto ALUA

Assert Control ALU ADD: —instruct ALU to perform ADD

gnal

ALU S - AC; -- gate ALU result to AC
PC+1,; --increment PC

*R.H. Katz Transparency No. 11-16

Contemporary Logic Design
Structure of a Computer Computer Organization

Memory Interface

More Realistic Block Diagram:

PC gy
IR A —>
> R
Issue memory request Request_ >
Read/Write > Memor
Is it aread or a write* < Wait y
Memory asks CPU to wait LD/ST Data Y
Instructions B q
< R

B N
Decouple memory system from Memory Buffer Register

internal processor operation

*R.H. Katz Transparency No. 11-17

Contemporary Logic Design
Structure of a Computer Computer Organization

Memory Interface

No common clock between CPU and memory

Follow asynchronous 4-cycle handshake request/wait (ﬁ) protocol

In Sequence
1. Request Asserted Request
2. Wait Unasserted Read/\Write / L k \ | X
3. Request Unasserted _._ < From Mémory>——< To Memory y——
4. Wait Asserted Wait K
Read Cycle Write Cycle

Memory cannot make request unless Wait signal is asserted

Hi-to-Lo transition on Wait implies that data is ready (read)
or data has been latched to be sent to memory (write)

*R.H. Katz Transparency No. 11-18

Contemporary Logic Design
Structure of a Computer Computer Organization

Memory Interface

State Diagram Fragments for Read/Write Cycles

Read Write
Cycle Cycle
_ MAR — AddressBus; MAR — AddressBus;
Wait 1 — Read/Write; _ 0 — Read/Write;
1 - Request; Wait 1 - Request;
MBR — DataBus; MBR — DataBus;
Wait W_ait
Wait —_—
0 — Request; Wait 0 — Request;
Wait — |
Wait
State 1: drive address bus Same behavior on wait
assert read request for read and write

catch data into MBR

State 2: unassert request
hold in state until Wait reasserted

*R.H. Katz Transparency No. 11-19

Contemporary Logic Design
Structure of a Computer Computer Organization

** 1/O Interface

Memory-Mapped I/O
I/O devices share the memory address space

Control registers manipulated just like memory word

Read/write register to initiate 1/O operation

** 1. Polling
Programs periodically checks whether I/O has completed

2. Interrupts
Device signals CPU when operation is complete

Software must take over to handle the data transfers from the device
Check for interrupt pending before fetching next instruction
Save PC & vector to special memory location for next instruction

Instruction set includes a "return from interrupt" instruction

*R.H. Katz Transparency No. 11-20

_ _ Contemporary Logic Design
Bussing Strateqgies Computer Organization

Register-to-Register Coummunications

* Point-to-point
* Single shared bus

* Multiple special purpose busses

Tradeoffs between datapath/control complexity and
amount of parallelism supported by the hardware

Case study:

Four general purpose registers that must be able to exchange
their contents

Swap instruction must be supported:
SWAP(RI, Rj)
Ri — Rj;
R] — Ri;

*R.H. Katz Transparency No. 11-21

. Contemporary Logic Design
Bussing Schemes Computer Organization

Point-to-Point Connection Scheme

‘LYVY ‘LYVY ‘LYVY ‘l“Ll‘l‘
- S1<1:0 . .
S0<1:0> 5 MUX <1:0> 5 MUX S2<1:0> : MUX S3<1:0> 5 MUX
LDO_, =5 LD1 . =1 LD2_, oy LD3 R3
' |

Four registers interconnected via 4:1 Mux's and point-to-point connections
* Edge-triggered N bit registers controlled by LDi signals

*N bit x 4:1 MUXes per register, controlled by Si<1:0> signals

*R.H. Katz Transparency No. 11-22

) Contemporary Logic Design
Bussing Schemes Computer Organization

Point-to-point Connections

Example:

Register transfers R1 -~ R0 and R2 > R3
(can be done simultaneously)

Register transfer operations:

01 - S0<1:0>; Enable path from R1 to RO
Enable MUX at destination

10 - S3<1:0>; Enable path from R2 to R3

1> LDO; Assert load for RO

1-—->LD3; Assert load for R3

*R.H. Katz Transparency No. 11-23

. Contemporary Logic Design
Bussing Schemes Computer Organization

Point-to-point Connections

When control signals are asserted and when they take place:

Enter state X:
Multiplexor control signals asserted
01 — S0<1:0>; R1 outputs arrive at RO inputs

10 — S3<1:0>; R2 outputs arrive at R3 inputs
1 —LDO; _
1 - LD3: LD signals asserted
Do not take effect until next rising clock
On entering state Y:
)

LD signals are synchronous and take
effect at the same time as the state
transition! (Validated with Edge Trigger)

Moore Machine
State Diagram

*R.H. Katz Transparency No. 11-24

) Contemporary Logic Design
Bussing Schemes Computer Organization

Point-to-point connections
Implementation of Register SWAP operation
SWAP(R1, R2):

01 — 82<1:O>; _ Establish connection paths
10 — S1<1:0>;

1> LD2; —————___ Swap takes place at next state
1->LD1; transition

Point-to-Point Scheme Plusses and Minuses:

+ transfer a new value into each of the

four registers at same time (Simultaneous transfer possible)
+ register swap implemented in a single control state

- 5 gates to implement 4:1 MUX

32 bit wide datapath implies 32 x 5 x 4 registers
= 640 gates!

very expensive implementation

*R.H. Katz Transparency No. 11-25

_) Contemporary Logic Design
Bussing Strategies Computer Organization

Single Bus Interconnection

S<1:.0> —>» MUX

¢ Single Bus
LDO =0 LDL_ 21 LD2 R2 LD3 5 [R3

* per register MUX block replaced by single block
* 25% hardware cost of previous alternative
*shared set of pathways is called a BUS

Single bus becomes a critical resource --
used by only one transfer at a time

*R.H. Katz Transparency No. 11-26

) _ Contemporary Logic Design
Bussing Strateqgies Computer Organization

Single Bus Interconnection
Example: R1 -~ R0 and R2 - R3

State X: (R1 - RO0)
01 — S<1:0>;

1-—- LDO;

StateY: (R2-—->R3)
10 — S<1:0>;
1->LD3;

Datapath no longer supports two simultaneous transfers!
Thus two control states are required to perform the transfers

*R.H. Katz Transparency No. 11-27

_) Contemporary Logic Design
Bussing Strategies Computer Organization

Single Bus Interconnection
SWAP Operation

A special TEMP reqgister must be introduced ("Register 4")
MUX's become 5:1 rather than 4:1

State X: (R1->R4) Three states are required rather than onel!
001 > S<2:0>; plus extra register (R4) and wider mux
1 - LD4;
More control states because this datapath
State Y: (R2 > R1) supports less parallel activity
010 — S<2:0>;

Engineering choices made based on how
1->LD1: frequently multiple transfers take place at
the same time

State zz (R4->R2)
100 > S<2:0>

1->LD2;

*R.H. Katz Transparency No. 11-28

_) Contemporary Logic Design
Bussing Strategies Computer Organization

Alternatives to Multiplexors

Tri-state buffers as an interconnection scheme

'D0—>| Rro DL 5[R1 P2 5[R D3 50 r3
S<1:0>| o—AK? —§‘7 —§‘7 K?
—~2p P Rk “ :

C ﬂl ‘

Only one register's contents gated to shared bus at a time

*R.H. Katz Transparency No. 11-29

_) Contemporary Logic Design
Bussing Strategies Computer Organization

Multiple Busses

Real datapaths are a compromise between the two extremes

Register Transfer BUS
Diagram i/ \L \L ;
Memory
Address ‘ A DMfmI;)ry
. . Bus M ata Bus
Single Bus Design n P | A > II\B/I
C| |IR]| |C
R B R

Register transfer operations: (all micro-operation listed)

PC > BUS BUS —> PC AC > ALU A
IR > BUS BUS - IR . o
AC —> BUS BUS —> AC ("hardwired”)
MBR -> BUS BUS - MBR
ALU Result -> BUS BUS ->ALU B

BUS —> MAR

*R.H. Katz Transparency No. 11-30

) _ Contemporary Logic Design
Bussing Strateqgies Computer Organization

Multiple Busses
Example Reqgister Transfer for Single Bus Design

Instruction Interpretation for "ADD Mem[X]"

Fetch Operand

Cycle 1: IR<operand address> — BUS;
BUS - MAR,;
Cycle 2: Memory Read,;

Databus - MBR;

Perform ADD Memory data (MBR) to ALU B

Cycle 3: MBR - BUS;
BUS - ALU B;
AC >ALUA; Requires latch
ADD; for ALU Result
Write Result
Cycle 4: ALU Result - BUS;
BUS — AC;

*R.H. Katz Transparency No. 11-31

_) Contemporary Logic Design
Bussing Strategies Computer Organization

Multiple Busses
Three Bus Design -- Supports more parallelism

Address Bus Result Bus
Memory
Address | M A M Memory
BUS P | A Data Bus
<A C R C B l€«—>
R R
B
T L Memory Bus Yy

Singie bus repiaced by three busses:

Memory Bus (MBUS)
Result Bus (RBUS)
Address Bus (ABUS)

*R.H. Katz Transparency No. 11-32

) _ Contemporary Logic Design
Bussing Strateqgies Computer Organization

Multiple Busses
Instruction Interpretation for "ADD Mem[X]"

Fetch Operand

Cycle 1: IR<operand address> - ABUS;
ABUS - MAR;
Cycle 2: Memory Read:;

Databus - MBR;

Perform ADD
Cycle 3: MBR -> MBUS: Implemented

MBUS -> ALU B: in three cycles
' rather than four

AC > ALUA:; _ _

ADD: By simultaneous operation
Write Result ALU Result - RBUS;

RBUS —> AC;

Overlap Cycle 3 + Cycle 4
by separate MBUS and RBUS

*R.H. Katz Transparency No. 11-33

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

State Diagram and Datapath Derivation

Processor Specification:

15 14 13 0
Instruction Format: Address
Code 01=ST
10 = ADD
11 = BRN

Load from memory: Mem[XXX] - AC,;

Store to memory: AC — Mem[XXX];

Add from memory: AC + Mem[XXX] - AC,;

Branch if accumulator is negative: AC <0 = XXX - PC;

Memory Interface: M 14b';2ddress
A // >
R
Request Memory
—Read/Write 5, 14
< Vit [0:2 -1]
M <15:0>
16
B 4(//)
R 16 bit data

*R.H. Katz Transparency No. 11-34

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

First pass state diagram:

/|/ Reset
> Instruction
Fetch

Operation
Decode

Operation
Execution

*R.H. Katz Transparency No. 11-35

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch Reset/
Sequence

Reset/0 - PC

On Reset:
zero the PC
Mem Request unasserted
Mem asserts Wait signal

*R.H. Katz Transparency No. 11-36

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset State (State 0) Reset/0 - PC
and Instruction Fetch Reset/ ‘@
Sequence
Reset/
PC - MAR,
On Reset: PC + 1 — PC
zero the PC ‘@
Mem Request unasserted

Mem asserts Wait signal

Instruction Fetch: v
Issue read request |
4 cycle handshake on Wait signal

*R.H. Katz Transparency No. 11-37

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset State (State 0) Reset/0 - PC
and Instruction Fetch Reset/ ‘@
Sequence
Reset/
PC - MAR,
On Reset: PC+1—PC
zero the PC Wait/ ‘@
Mem Request unasserted .
Mem asserts Wait signal Walt/
MAR — Memory,
Instruction Fetch: v 1 — Read/Write,
Issue read request 1 - Request

4 cycle handshake on Wait signal

*R.H. Katz Transparency No. 11-38

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset State (State 0) Reset/0 - PC
and Instruction Fetch Reset/ @
Sequence
Reset/
. . PC —» MAR,
Wait/ means active low
On Reset: PC+1—PC
zero the PC Wait/
Mem Request unasserted Wait/
Mem asserts Wait signal _ a
Identical MAR — Memory,
Instruction Fetch: Wait/ 1 — Read/Write,
Issue read request 1 — Read/Write, 1 — Request
4 CyC|e handshake on Wait Signal 1 — Request, together
MAR —Memory Wait/Mem — MBR
o _ Wait/ bar means data ready
Note: No explicit mention of the
busses being used to implement

register transfers! \L

*R.H. Katz Transparency No. 11-39

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

(=

Reset/

Reset State (State 0)
and Instruction Fetch Reset/
Sequence

Reset/0 - PC

PC - MAR,
On Reset: PC+1—5PC
zero the PC Wait/ ‘@
Mem Request unasserted .
Mem asserts Wait signal wait/
Identical | MAR —Memory,
Instruction Fetch: Wait/ \l, 1 — Read/Write,
Issue read request 1 — Read/Write, 1 - Request
4 cycle handshake on Wait signal 1 - Request, together
MAR — Memory ‘Wait/Mem — MBR

Note: No explicit mention of the Wait/
busses being used to implement

register transfers! Wait/MBR — IR

*R.H. Katz Transparency No. 11-40

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

Operation Decode State

10 \l1

@@
.

Four Way Next State Branch based on opcode bits

IR<15:14>=00

*R.H. Katz Transparency No. 11-41

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence See slide pp.34
- @ For F
like IFetch, except that or Format
operand address comes IR<15:14>=00/
from IR and data should IR<13:0> -» MAR
be loaded into AC

*R.H. Katz Transparency No. 11-42 /

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence @

like IFetch, except that

operand address comes IR<15:14>=00/
from IR and data should IR<13:0> -»> MAR
be loaded into AC

Wait/

Wait/
MAR — Memory,
1 - Read/Write,

@ 1 - Request

*R.H. Katz Transparency No. 11-43

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence @

like IFetch, except that
operand address comes IR<15:14>=00/
from IR and data should IR<13:0> -»> MAR

be loaded into AC

Wait/
Wait/

/Identidal MAR —Memory,
W_a't/ 1 - Read/Write,
1 - Read/Write,

1 - Request
1 - Request, @

MAR — Memory Wait/Mem — MBR

*R.H. Katz Transparency No. 11-44

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence

like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

IR<15:14>=00/
IR<13:0> > MAR

nO

Wait/

Wait/

MAR — Memory,

1 — Read/Write,

1 - Request
together

Wait/Mem — MBR

Wait/ ldentigal

1 —» Read/Write,
1 —» Request,
MAR — Memory

Wait/
Wait/MBR — AC

DA

*R.H. Katz Transparency No. 11-45

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> > MAR,

' AC —» MBR

*R.H. Katz Transparency No. 11-46

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> > MAR,
AC »> MBR

-

Wait/
Wait/

MAR — Memory,
MBR — Memory,
0 —» Read/Write,
ST1)1 — Request

RO

)

3

*R.H. Katz Transparency No. 11-47

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> > MAR,

AC - MBR
Wait/
‘ Wait/
Wait/ MAR — Memory,
0 — Read/Write, MBR — Memory,
1 — Request, (\ 0 — Read/Write,

......... @1 — Request
MBR — Memory
@ Wait/

*R.H. Katz Transparency No. 11-48

D

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> > MAR,
AC »> MBR

-

Wait/
Wait/

MAR — Memory,
MBR — Memory,
0 —» Read/Write,
ST1)1 — Request

Wait/
0 —» Read/Write,
1 - Request,

RO

)

IVINIT B IS ¥

MBR — Memory

Wait/

-

Wait/

Wait/

*R.H. Katz Transparency No. 11-49

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
Add MBR, AC rather than @
simply transfer MBR to AC IR<15:14>=10/

IR<13:0> > MAR

*R.H. Katz Transparency No. 11-50

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
Add MBR, AC rather than
simply transfer MBR to AC IR<15:14>=10/

IR<13:0> > MAR

Wait/

Wait/

MAR — Memory,
1 —» Read/Write,
1 - Request

*R.H. Katz Transparency No. 11-51

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
Add MBR, AC rather than
simply transfer MBR to AC IR<15:14>=10/

IR<13:0> > MAR

Wait/
Wait/

MAR — Memory,
1 —» Read/Write,
1 - Request

Wait/

1 —» Read/Write,
1 —» Request,
MAR — Memory

A CaNe

D1

Wait/Mem — MBR

*R.H. Katz Transparency No. 11-52

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
Add MBR, AC rather than
simply transfer MBR to AC IR<15:14>=10/

IR<13:0> > MAR

e

Wait/
Wait/
Wait/ MAR — Memory,
fm 1 - Read/Write,
1 - Read/Write,
1 - Request
1 - Request, AD1

MAR — Memory
Wait/Mem —- MBR

wa | (02)
Wait/
MBR + AC ->AC

*R.H. Katz Transparency No. 11-53

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Branch Execution Sequence

IR<15:14> =11/

BRO

*R.H. Katz Transparency No. 11-54

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath
Branch Execution Sequence

IR<15:14> =11/
BRO

AC<15> =1/
IR<13:0> > PC AC<15> =0/

Replace PC with / @

Operand Address if
AC<O0

Otherwise, do nothing

*R.H. Katz Transparency No. 11-55

Finite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Revised/Complete State Diagram

Contemporary Logic Design
Computer Organization

Simplify Wait Looping

Eliminate some Wait states

At this point, Wait must be
asserted, so why loop on
Wait* (same loop condition,
both for memory grant) <

Why loop on Wait when

resync will take place at
state IFO* (same loop
condition, both for memo

grant)

r/
9
S

/

i Walt/

Wait/

iWalt/

Walt/

Walt/
AD2 ?

*R.H. Katz Transparency No. 11-56

. _ _ Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Deriving the State Diagram and Datapath

State Machines Inputs and Outputs so far:

Inputs: Outputs:
Reset 0—-PC
Wait PC+1->PC
IR<15:14> PC - MAR
AC<15> MAR -> Memory Address Bus

Memory Data Bus - MBR
MBR — Memory Data Bus
MBR — IR

MBR — AC

AC > MBR

AC + MBR - AC

IR<13:0> - MAR
IR<13:0> > PC

1 —~ Read/Write

0 — Read/Write

1 > Request

*R.H. Katz Transparency No. 11-57

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Processor Signal Flow

| Memory

AA
Reset Wait Addr Data
;Ir Bus Bus
Read/Write
Request
0—->PC
PC+1—->PC

PC > MAR
MAR — Memory Address Bus

Memory Data Bus -» MBR
MBR — Memory Data Bus
MBR — IR
MBR —» AC

AC »> MBR

AC + MBR > AC
IR<13:0> > MAR
IR<13:0> —» PC

Mem Mem

—rOxXx4Z200
I 4> U0U> 442> 0

YYYYYVYYYYYYY

IR<15:14>
<
< AC<15>

*R.H. Katz Transparency No. 11-58

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Control

Specification so far is independent of bussing strategy

Implied transfers:

Operand Fetch Store
ilFetch Branch Add i
Memory ¢ ¢ ¢ Add Memory
Address A Data
Bus M P | A M Bus
<A e SE—
C R C B
R R
B
A A | Add |
T Load
IFetch

This is the point-to-point connection scheme

*R.H. Katz Transparency No. 11-59

. _ _ Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Observe that instruction fetch (branch, too) and operand fetch
take place at different times

This implies that IR, PC, and MAR transfers can be implemented
by single bus (Address Bus)

Combine MBR, IR, ALU B, and AC connections (Memory Bus)
Combine ALU, AC, and MBR connections (Result Bus)

Three bus architecture:
AC + MBR -> AC impiemented in single state

*R.H. Katz Transparency No. 11-60

Contemporary Logic Design

Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Address Bus Result Bus
Memory _& T T $ J Memory
Address Data
Bus M P | A M Bus
- A C R B <>
R C R

T 1‘ ot i9e dual ported
L Memory Bus

AC has two inputs, RBUS and MBUS
(Other registers except MBR have single input and output)

Dual ported configuration is more complex

Better idea: reusing existing paths was possible
MBR — AC transfer implemented by PASS B ALU operation

*R.H. Katz Transparency No. 11-61

. _ _ Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Detailed implementation of register transfer operations

More detailed control operations are called microoperations

One register transfer operation = several microoperations

Some operations directly implemented by functional units:
e.g., ADD,PassB,0 - PC,PC+1—-PC

Some operations require multiple control operations:

e.g., PC - MAR implemented as
PC — ABUS and ABUS - MAR (micro-operation)

*R.H. Katz Transparency No. 11-62

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Address
Bus
MAR]
< 1 PC
LD CLR CNT
T PC - ABUS
ABUS - MAR 0> PC PC+1—->PC

PC implemented by
counter with COUNT
Load Input and CLEAR inputs

Tri-state Control

*R.H. Katz Transparency No. 11-63

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations
Timing of State Changes and Microoperations

Consider Edge

Triggered Register RES IFO IF1
CLK
Reset
| PC gets O
0 PC Af/
_ B PC gets
Deferred til next PC+1

clockedge PC+1->PC

Takes place pc _, ABUS PC on
iImmediately ABUS
Deferred til next ABUS s MAR
_)
clock edge P 4
MAR latches
ABUS

*R.H. Katz Transparency No. 11-64

. _ _ Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations
Relationship between register transfer and microoperations:

Reqister Transfer Microoperations

0->PC 0 —~ PC (delayed);

PC+1-PC PC + 1 - PC (delayed);

PC - MAR PC - ABUS (immediate),
ABUS - MAR (delayed);

MAR — Address Bus MAR — Address Bus (immediate);

Data Bus -~ MBR Data Bus -~ MBR (delayed);

MBR — Data Bus MBR — Data Bus (immediate);

MBR - IR MBR -~ ABUS (immediate),
ABUS - IR (delayed);

MBR —> AC MBR -> MBUS (immediate),

MBUS - ALU B (immediate),
ALU PASS B (immediate),

ALU Result -~ RBUS (immediate),
RBUS — AC (delayed);

Register Transfer : Delayed
Register = Bus : Immediate
Bus -2 Register : Delayed
(remember Edge Triggered)

*R.H. Katz Transparency No. 11-65

Contemporary Logic Design

Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Relationship between register transfer and microoperations:

Reqister Transfer

Microoperations

AC - MBR

AC + MBR > AC

IR<13:0> -> MAR
IR<13:0> - PC
1 > Read/Write

0 —> Read/Write
1 > Request

AC - RBUS (immediate),
RBUS > MBR (delayed);

AC - ALU A (immediate),
MBR - MBUS (immediate),
MBUS -~ ALU B (immediate),
ALU ADD (immediate),

ALU Result - RBUS (immediate),
RBUS — AC (delayed);

IR -~ ABUS (immediate),
ABUS - IR (delayed);

IR -~ ABUS (immediate),
ABUS — PC (delayed);

Read (immediate);

Write (immediate);

Request (immediate);

Special microoperations for AC —- ALU and ALU Result - RBUS
not strictly necessary since these connections can be hardwired

*R.H. Katz Transparency No. 11-66

.. . . Contemporary Logic Design
Finite State Machines for Simple CPUs Computer Organization

Mapping onto Datapath Operations

Revised microoperation signal flow

| Memory

Mem Mem
Reset Wait Addr Data
* Bus Bus

Read/Write
Request

0>PC 4 inputs
PC+1—»>PC

PC - ABUS

IR > ABUS

ABUS > MAR

ABUS —» PC

MAR — Memory Address Bus
Memory Data Bus - MBR
MBR — Memory Data Bus
MBR - MBUS

MBUS — IR

MBUS —» ALUB

RBUS - AC

RBUS - MBR
ALU ADD
ALU PASS B

make sure that Reset and
Wait are synchronized

[EY
o

AAatAarm~t . + '
Uadtapatil CUIILTUI 11

—rOxXx4=Z200

I+4>»7T>»—+42>0

2 memory control lines

YYYYYYVYYYVYVYYYVYVYY

IR<15:14>
AC<15>

<
<

*R.H. Katz Transparency No. 11-67

_ Contemporary Logic Design
Controller Implementation Computer Organization

Chapter Summary

* Basic organization of the Von Neumann computer

Separation of processor and memory

* Datapath connectivity

* Control Unit Organization

Register transfer operation

*R.H. Katz Transparency No. 11-68

