Microprocessor
Ch.0 & Ch.1 Introduction to Microcontroller

OUTLINE

What is microcontroller? (Ch. 1.1)

e 8051 Microcontroller (Ch. 1.2)

 Numbering and coding: binary, decimal, hexadecimal, ASCII (Ch. 0.1)

« Basic digital logics (Ch. 0.2)

* Operations of a computer (Ch. 0.3)

WHAT IS MICROCONTROLLER?

What are inside a computer?
— Central processing unit (CPU)
» Execute (process) information stored in memory

— Memory

 Store information

* Random access memory (RAM)

* Read only memory (ROM)
— I/O (input/output) devices

 Also called peripherals

* Monitor, keyboard, harddrive, CD-ROM, video card
— Bus

« Strip of wires connecting CPU, memory, and I/O devices

Address Bus

| |

Memory Peripherals
CPU
(monitor,
(RAM, ROM) printer, etc.)

T

Data Bus

WHAT IS MICROCONTROLLER?

* Microprocessor v.s. Microcontroller
— Microprocessor: a CPU on a single integrated chip (IC)
 aspecial type of CPU
* The brain of a computer

— 8086, 80286, 80386, 80486, Pentium, Core 2 Duo, Core 2 Quad, ...
— K35, K6, Atholon, Atholon 64, Opteron, Phenon, ...
— PowerPC G4, PowerPC G5, Xenon, Broadway, Cell, ...
* Contains no RAM, no ROM, no I/O ports.
— Microcontroller: a microprocessor, and RAM, ROM, I/O ports, and timer on a
single chip. Also called MCU, uC, uC
* “Computer on a chip”
* Also called MCU (MicroController Unit)
» Usually not as powerful as general purpose microprocessor
* Low power consumption, small in size, low cost.
* A lot of MCUs are application specific (as against the general

purpose microprocessor).

MIRCOCONTROLLER: APPLICATIONS

« Applications of micro-controller

— Home
« TV, MP3 player, camera, DVD player, CD player, cell phone, alarm
clock, microwave, refrigerator, washer/dryer, treadmill, air conditioner,
Modem,

— Office

» Scanner, printer, fax machine, copier, wireless router,
— Industry

* Machinery, equipment, instrumentation, Rocket,......

— Auto
» ABS, airbag, instrumentation, climate control, transmission control,
entertainment system,
 Microcontroller is everywhere!
— Most of the applications requires the MCU to be
« Small in size = the final product is small
* Low cost = lower the price of the end product
« Low power consumption => longer battery life

» Simple (as long as it can have the job done) = low cost, small, low
power consumption

MICROCONTROLLER: EMBEDDED SYSTEMS

 Embedded system: a system with an embedded special-purpose
computer designed to perform one or a few dedicated functions.

Embedded system:
* the embedded computer is just part of a bigger system.
* The computer by itself cannot perform any meaningful functions.
* E.g. a MCU embedded in a washer
Contrast to: general purpose computer (personal computer)
« A PC itself 1s a complete system
* You can use it to perform various tasks

Usually an MCU is embedded in a complete device including mechanical
parts

» E.g. camera, microwave
The operation software is embedded in hardware

» E.g. the operation software is stored in the ROM on MCU.

* Doesn’t have separate device (CD, harddrive) to store programs.
All the applications of MCU can be considered as embedded systems

MICROCONTROLLER: COURSE CONTENTS

What are we going to learn in this course?
— What are inside a microcontroller?
« the basic structure of a microcontroller
— How to program a microcontroller?
» Assembly language
» C language
— How to build a system with a microcontroller?
* I/O ports

 Hardware connection

OUTLINE

e Introduction to 8051 (Ch. 1.2)

8051

 Four major 8-bit microcontrollors

— Freescale: 6811, Intel: 8051, Zilog: Z8, Microchip: PIC 16X
 How do we decide which MCU to use?

— Speed

— Power consumption

— Amount of RAM and ROM on chip

— Number of I/O pins

— Cost per unit

— Packaging

— Availability

— How easy i1s it to develop a product around it.

- 8051
— One of the most popular MCUs in the market.
« Several manufactures are building 8051
» Wide availability, low cost,

— Clean structure: easy to learn, easy to use

8051: OVERVIEW

10

8051 MCU family
— There are different variations of 8051 by different manufactures
* Intel: 8051, 8052
Dallas Semiconductor: DS89C4x0 (x =2, 3,4, 5)
Atmel: AT89C51
Philips

Texas Instruments

— They differ in speed, ROM/RAM size, packaging, timer, I/O pins, timer,
operation voltage, and other peripherals

* E.g. some of them have built in analog to digital converter (ADC).
— They all support the same 8051 instruction set

8051: DS89C430

 The 8051 chip that will be used in our lab
— DS89C430 by Dallas Semiconductor
« ROM: 16 KB
« RAM: 256 Bytes
* I/O pins: 32
* Timers: 3
 Interrupts: 6
* Clocks per machine cycle: 1

* Operation voltage: 5V

OUTLINE

12

 Numbering and coding: binary, decimal, hexadecimal, ASCII (Ch. 0.1)

NUMBERING: DECIMAL AND BINARY

13

 Decimal and binary number system

— Decimal: 0,1,2,3,4,5,6,7,8,9

— Binary: 0, 1 (used by computer)

— Weight associated with each digit
e Decimal: 256,,=2x10>+5x10"+6x10°
* Binary: 101, =1x2* +0x2' +1x2°

— Convert binary to decimal
« Example

— Convert 11001, to decimal number

NUMBERING: DECIMAL AND BINARY

14

 Decimal and binary number system (Cont’d)
— Convert decimal to binary
* Method 1: use the weight of digit
— Example: convert 39,, to binary.

* Method 2: divide the decimal by 2 repeatedly until the quotient becomes
0, and keep track of the remainder

— Example: convert 39,, to binary

NUMBERING: HEXADECIMAL SYSTEM

15

Hexadecimal system: base-16 system
- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F

— Mainly used as a convenient representation of binary

number
* 4 binary digits = 1 hex digit
— Convert binary to hexadecimal
* Example: 111101,

— Convert hexadecimal to binary
* Example: 29BH

NWM

Decimal Bi-ﬂ H
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

NUMBERING: HEXADECIMAL SYSTEM

16

 Hexadecimal system (Cont’d)
— Convert from hex to decimal
« Use weights of digits (...16°,16°,16',16")
« Example: converts 6 FEH to decimal

— Convert from decimal to hex
* Method 1: use weight of digit
» Method 2: keep divide by 16 and keep track of quotient

« Example: convert 45 to hex

NUMBERING: HEXADECIMAL SYSTEM

17

 Hexadecimal system
— Counting
* Decimal
012345678910111213141516171819 20 ...
 Hex
0123456789 AB CD EF ?
0123456789 A B CD EF 1011121314

NUMBERING: ARITHMATIC

18

* Binary addition
— Example: find the sum of 1101, and 1001,

e Hexadecimal addition
— Example: find the sum of 23D9H + 94BEH

NUMBERING: 2°S COMPLEMENT

19

e 2’s complement
— To get 2°s complement of a binary number
1. Invert all bits (1 = 0,0 = 1) = 1’s complement
e 2.add 1 to the result
— Example
* Find the 2°s complement of 01100011,

— Usually used to represent negative numbers, and to calculate the subtraction
of binary numbers

— We will discuss its application in Ch. 6, Arithmetic

20
NUMBERING: ASCII

 ASCII

— American Standard Code for Information Interchange
— Use binary patterns to represent numbers and English alphabet

— Standard ASCII code
» Each character is represented by 7-bit
» Totally there are characters in the 7-bit ASCII table.
— Extended ASCII code
» Each character is represented by 8-bit
» Totally there are characters in the 8-bit ASCII table.
— The complete ASCII table can be found at Appendix F of Mazidi’s book.
Hex Symbol Hex Symbol
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
59 Y 79 vy
5A Z TA z

OUTLINE

21

« Basic digital logics (Ch. 0.2)

LOGIC

* Binary logic
— Use two voltages to represent 0 and 1
« Eg. 0V=>°0,5V>
* Logic gates

— AND :j— NAND)—
-~ XOR j)D— XNOR ;)D—

— NOT ,_l>,v_, Summary of 2-input logic
Inputs Output of each gate
AB AND | NAND | OR | NOR | EX-OR | EX-NOR
00 0 1 0 1 0 1
0|1 0 1 1 0 1 0
1|0 0 1 1 0 1 0
1 1 1 0 1 0 0 1

OUTLINE

23

e Operations of a computer (Ch. 0.3)

COMPUTER

 Terminology

— Bit (b): Oorl

— Nibble: 4bits 0000, 0001, ..., 1111

— Byte (B): 0000 0000, , 1111 1111

— Word (16 bits): 0000 0000 0000 0000, , 1111 1111 1111 1111
* Prefix

— Kilo-: 2" =1024~10°
« E.g. I kilobyte = 1KB = 1024 bytes = 1024 x 8§ bits
* E.g. 1 kilobit = 1Kb = 1024 bits

— Mega-: 2% =1,024x1,024 =1,048,576 ~10°
 E.g. | megabyte = IMB = 1024 x 1024 bytes

— Giga-: 2" =1024x1,024x1,024 ~10’

— Tera-: 2% =1,024x1,024x1,024x1,024 ~ 10"

— Peta-:

— Exa-:

25
COMPUTER: STRUCTURE

e Structure
— CPU: process information in memory
— Memory

« RAM (Random access memory) : temporary storage of programs that it is
running

— The data is lost if computer 1s turned off (volatile memory)

* ROM (read only memory): contains programs and information essential
for computer operation

— E.g. when a computer is powered on, it will first execute a program
stored in ROM to perform initialization before loading the operating
system

— It’s permanent and usually cannot be changed by the user (non-
volatile memory)

— Peripherals
 Serial port, parallel port, keyboard, monitor,

COMPUTER: STRUCTURE

* Bus
— Strip of wires used to connect CPU with memory and peripherals
— Data bus
» The data lines used to carry information in and out of CPU.
* The more data lines, the better the CPU
— Analogy: highway with more lanes
» Typical values: 8-bit, 16-bit, 32-bit, 64-bit
— A 32-bit bus can send out 4-byte of data at one time
 Bidirectional
— Data can get in or out of CPU

Address Bus

\ Y ;

RAM | [ROM | | Printer | | Disk | | Monitor | | Keyboard
CPU FEF T L A

Y y | v
Data Bus

A A A | A

Read/write
Control Bus

27
COMPUTER: STRUCTURE

* Bus (Cont’d)
— Address bus

* Many devices are connected to a single data bus, how does the CPU know which
device the data is from or to? = address bus!

Address bus 1s used to identify device and memory connected to CPU.

— Each byte in memory has its unique address

If there are n address lines, then the total address range is 2" bytes
— E.g. 8-bit address line: 2° = 256 bytes address range
— E.g. 32-bit address line: 2°2 = 4GB address range

» If the system has a total of 32-bit address lines, the maximum supported
memory 1s 4GB.

Each device is assigned a range of addresses
— E.g. 8-bit address line with 64-byte RAM, 32-byte ROM, 16 I/O ports
» RAM: address 0 — 63
» ROM: address 64 — 95
» 1/O ports: address 96 — 112
» Printer: 113 - 114

» e

Address bus is unidirectional = it’s value can only be changed by CPU.

COMPUTER: STRUCTURE

28

 Bus (Cont’d)
— Control bus
« CPU sends control information to devices to control their operations

* E.g. CPU sends read or write control information to the devices to
indicate it wants to read from the device, or write data to the device.

— The operation of a computer relies on the combination of the three buses
* E.g. CPU wants to read a data byte from memory location 32.
— 1. CPU set the value of the address bus to 32
— 2. CPU use the control bus to put the memory in read mode
— 3. CPU read the data byte on the data bus

COMPUTER: CPU

29

Inside CPU

— ALU (arithmetic logic unit)

» Arithmetic functions (add, subtract, ...)

» Logic functions (and, or, not, ...)

Flags

ALU

-

Program Counter

Instruction Register

I

Instruction
" decoder, timing,
and control

Internal
buses

Register A

Register B

Register C

Register D

sng SSQIppY

sng ele sosng [01U0))

COMPUTER: CPU

30

CPU (Cont’d)

— Registers

Temporarily store information

Data read from memory or device will first be stored in registers, then
CPU will process data in register

Calculation results will be store in register, then send out to memory

E.g. 3 +5, 3 will be first loaded to register A, 5 will be first loaded to
register B. Then CPU calculates 3+5, the result, 8, will be stored in
register A.

Typical size: 8-bit, 16-bit, 32-bit (most popular nowadays), 64-bit

COMPUTER: CPU

31

« CPU (Cont’d)
— Instruction register, instruction decoder, program counter

* Instruction: a special binary pattern corresponds to a certain operation by
CPU

— E.g. 1011 0000 (BOH): move data to register A
— E.g. 0000 0100 (04H): add a value to register A
* Program is a sequence of instructions, and it is stored in memory

* CPU reads the program from the memory, one instruction at a time, and
the current instruction is temporarily stored in instruction register

* The instruction decoder interprets the meaning of the instruction, so CPU
can execute according to the instruction.

» Program counter: point to the memory address of the next instruction to
be executed.

COMPUTER: CPU

 Example
— A program stored in the memory address range 1400 — 1406.

address contents of memory
1400 (B0)code for moving a value to register A
1401 {21)value to be moved
1402 (04)code for adding a value toc register A
1403 (42)value to be added
1404 (04)code for adding a value to register A
1405 {12)value to be added
1406 (F4) code for halt
PC
IR
RA

PC: program counter. IR: instruction Register. RA: register A.

