
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.2 Assembly Language Programming

Dr. Jingxian Wu
wuj@uark.edu

2

OUTLINE

• Inside 8051

• Introduction to assembly programming

• Program counter and ROM space

• PSW register and flag bits

• Register bank and stack

3

INSIDE 8051: BLOCK DIAGRAM
• Block diagram

4

INSIDE 8051: REGISTERS
• Registers (inside CPU)

– Most widely used registers:
• 8-bit registers: A (accumulator), B, R0 ~ R7, PSW (program status word)
• 16-bit registers: DPTR (data pointer), PC (Program counter)

– Most registers are 8-bit
• The bits inside one register are designated as 7, 6, 5, 4, 3, 2, 1, 0
• MSB (most significant bit): bit 7
• LSB (least significant bit): bit 0

7 6 5 4 3 2 1 0an 8-bit register:

5

OUTLINE

• Inside 8051

• Introduction to assembly programming

• Program counter and ROM space

• PSW register and flag bits

• Register bank and stack

6

ASSEMBLY: MOV
• MOV

– MOV destination, source
• Copies data from source to destination

– Example:
• MOV A, #55H ; load 55H into reg. A
• MOV R0, A ; copy contents of A into R0
• MOV R3, #16 ; load 16 into R3
• MOV A, R3 ; copy contents of R3 into A

– Notes:
• Immediate number: a regular constant number, always prefixed by a pound

sign #.
• A post-fix of ‘H’ means this is a hex number

– Opcode v.s. Mnemonics
• The Opcode for “MOV A, #55H” is: 01110100 01010101 (74H 55H)
• CPU will only understand Opcode (machine code)
• MOV is called the mnemonic for Opcode � easy to remember, easy to read.
• Mnemonics will be translated to Opcode by an assembler.

Comments

7

ASSEMBLY: RUN PROGRAM
• Assembling and running an 8051 program (Demo)

– 1. Use an editor to type in your assembly program (source file)
• Usually has an extension of *.asm, *.a51

– 2. Assembler
• An assembler program converts the mnemonics into binary machine code

that can be understood by the MCU.
• Assembler will generate two files

– 1) list file (*.lst)
» Optional. List all the instructions and addresses.
» Helpful for program development

– 2) object file (*.obj)
» Binary file contains the binary machine code

– 3. Linker
• Combine one or more obj files into an absolute object file (no extension)

– 4. Object to hex converter
• Convert absolute obj file to a file with extension “hex”, which can be

burned into the ROM of the MCU.
– 5. Burn the HEX file to 8051.

ASSEMBLY: DEVELOPMENT ENVIRONMENT
• Host

– The PC used to develop the program, it usually has
• Editor (edit source file)
• Compiler (convert high level language to machine code *.obj)
• Assembler (convert assembly language to machine code *.obj)
• Linker (link several obj files into an absolute obj file)
• Obj to Hex converter (convert obj file to Hex file)
• Loader (load the hex file to target)

• Target
– The development hardware with embedded microcontroller.
– It can be connected to Host through various interfaces

• E.g. RS232, USB, JTAG, IEEE1394, ……

8

Host Target

ASSEMBLY: MOV
• Some additional notes about MOV (Cont’d)

– MOV #0F3H
• If the number starts with a letter, put ‘0’ in front of it.

– MOV A, #7F2H ; possible error
• Why?

– MOV A, #257 ; possible error
• Why?

– MOV A, #34H is different from MOV A, #34
– MOV A, #34H is different from MOV A, 34H

• We will discuss the meaning of MOV A, 34H later.

9

ASSEMBLY: ADD
• ADD

– ADD A, source
• Add the contents in Reg. A with source, and store the result in A
• Review: Reg. A is also called accumulator
• Destination must be A!!!

– Examples
• 1. MOV A, #25H ;load 25H into A

MOV R2, #34H ;load 34H into R2
ADD A, R2 ; A = A + R2

• 2. MOV R1, #0F5H ;load F5H into A (demo)
MOV A, #0 ;load 0 into A
ADD A, R1 ;
ADD A, #34 ; what is the value of A after this operation?

– Be careful of overflow (the result requires more than 8 bits)!
• Only the lower 8 bits will be stored in register A
• The carry flag in the PSW (program status word) register will be set if an

overflow happens (we will talk about PSW later this chapter).

10

ASSEMBLY: STRUCTURE
• Structures of assembly language

– 1. A series of lines of assembly language instructions and/or directives
– 2. An assembly language instruction consists of up to 4 fields

[label:] mnemonic [operands] [;comments]
• Label: allows the program to refer to a line of code by name

– E.g. HERE: SJMP HERE
• Mnemonic and operands

– The combination of mnemonic and operands will be translated to
binary machine code

– E.g. MOV A, #23H ;Opcode: 0111 0100 0010 0011 (7423H)

MOV A 23H

11

ASSEMBLY: DIRECTIVES
• Directives

– A pseudo-code that cannot be translated into machine code
– Used to notify assembler of certain operations

• E.g. END: notify assembler the end of the source file.
• Commonly used directives

– ORG: origin
• Indicate the beginning of the address
• The number after ORG can be either in hex or decimal

– DB: define byte (demo directives)
• Define an 8-bit data

ASSEMBLY: DIRECTIVES
• Commonly used directives

– EQU: equate
• Define a constant without occupying a memory location
• It DOES NOT use any memory space!
• The constant value can be used later in the program

– To improve the readability of the program
» Give a name to a constant

– To improve code efficiency
» If the same constants are used twice in the program, with the

EQU directive, we only need to change it in one location if its
value is changed

» We should avoid using constant directly, and use the EQU
directive as often as possible.

• Example (Demo directives)
COUNT EQU 25H
MOV R3, #COUNT
MOV A, #COUNT

14

OUTLINE

• Inside 8051

• Introduction to assembly programming

• Program counter and ROM space

• PSW register and flag bits

• Register bank and stack

ROM SPACE: PROGRAM COUNTER
• Program counter (PC)

– A 16-bit register inside 8051 that points to the ROM address of the next
instruction to be executed

– Every time the CPU fetches the opcode from the program ROM, the PC will
be automatically incremented to point to the next instruction

• If the current opcode is one byte, PC will be incremented by 1 (Demo PC)
– E.g. MOV A, R5, Opcode: 1110 1101 (EDH)

n=5MOV Rn

• If the current opcode is two bytes, PC will be incremented by 2 (Demo PC)
– E.g. MOV A, #0H, Opcode 0111 0100 0000 0000 (7400H)

MOV A 00H

15

ROM SPACE: PROGRAM COUNTER
• Program counter (Cont’d)

– When 8051 wakesup, the PC has an initial value of 0000H
• We must put our initial program at location 0000H
• What will happen if our program is not at 0000H? (Demo PC)

• ROM space
– ROM is used to store program � it’s accessed by PC.
– Address range that can be accessed by program counter

• PC has 16-bits
– Start address: 0000H (0000 0000 0000 0000)
– Maximum end address: FFFFH (1111 1111 1111 1111)
– Each address corresponds to 1 byte

• The maximum ROM space that can be accessed by PC is: 64 KB
• Most 8051 chips have a ROM size less than 64 KB

16

ROM SPACE: EXAMPLE
• ROM space examples

– 1. Dallas Semiconductor DS89C430 has 16KB on chip ROM. Write down the
ROM address range in hex format.

– 2. The ROM address range of Atmel AT89C51 is 0000H to 0FFFFH. What is
size of the ROM in AT89C51

17

18

OUTLINE

• Inside 8051

• Introduction to assembly programming

• Program counter and ROM space

• PSW register and flag bits

• Register bank and stack

PSW:
• PSW: program status word register

– An 8-bit register used to indicate the status of the program and uC.
• Only 6 bits are used by 8051
• The 2 remaining bits can be used by users (programmers).

– Also called flag register.
– 4 conditional flags: indicate some conditions after an instruction is executed

• CY (carry), AC (auxiliary carry), P (parity), OV (overflow)
– 2 register bank selection bits: (will be discussed later

19

PSW: CONDITIONAL FLAGS
• PSW conditional flags

– CY (carry flag, PSW.7)
• The flag is set (value changed to 1) whenever there is a carryout from the

D7 bit of RA. (demo add)
– E.g. MOV A, #9CH

ADD A, #64H
What is the value in A and PSW.7?

• The CY bit can be set or cleared (value changed to 0) by the following
instructions (demo add)

– SETB C ; set the CY bit to 1
– CLR C ; clear the CY bit to 0

– AC (auxiliary carry flag, PSW.6)
• If there is a carry from the bits D3 to D4 during an ADD or SUB

operation, this bit is set; otherwise it’s cleared
• E.g. What is the value of CY and AC after the following instructions?

MOV A, #38H
ADD A, #2FH

20

PSW: CONDITIONAL FLAGS
• PSW conditional flags (Cont’d)

– P (the parity flag, PSW.0)
• If the number of 1s in register A is odd, then P = 1
• If the number of 1s in register A is even, then P = 0
• E.g. find the values of CY, AC, and P after the following instructions

MOV A, #88H
ADD A, #93H

– OV (the overflow flag, PSW.2)
• The bit is set whenever the result of a signed number operation is too

large (we will discuss signed number operation in Ch. 6)
• OV is used for signed arithmetic (to detect whether there is an overflow)
• CY is used for unsigned arithmetic (to detect whether there is a carry)

21

22

OUTLINE

• Inside 8051

• Introduction to assembly programming

• Program counter and ROM space

• PSW register and flag bits

• Register bank and stack

REGISTER BANKS: RAM SPACE
• RAM space

– There are total 128 bytes of RAM in 8051 (recall: the max ROM size that can
be supported by 8051 is 64 KB corresponding to 16-bit PC)

• Address range: 00H ~
• DO NOT confuse with ROM address range (ROM can only be accessed

with the PC register)
– The 128 bytes are divided into three groups

• 00H – 1FH (bytes):
– register bank and stacks

• 20H – 2FH (bytes):
– bit-addressable memory

• 30H – 7FH (bytes):
– “scratch pad”
– Storing data and parameters

23

REGISTER BANKS
• Register banks (total 32 bytes)

– The 32 bytes are divided into 4 banks with 8 bytes in each bank
• Each bank has 8 8-byte registers: R0 – R7

– When programming, e.g. “MOV A, R0”, which R0 are actually used?
• Depends on the values of the RS1 (PSW.4) and RS0 (PSW.3) bits in PSW.
• When 8051 powered on, RS1 = RS0 = 0 � bank 0 is used by default

24

REGISTER BANKS: EXAMPLES
• Examples (demo)

– Fill out the contents of the memory between 00H – 1FH after the following
operations

– 1. MOV R0, #99H
MOV R7, #63H

– 2. SETB PSW.4 ; set PSW.4 to 1
MOV R0, #76H
CLR PSW.4
SETB PSW.3
MOV R5, #12H

– 3. ; the register banks can be directly accessed through its address
MOV 06H, 18H ; RAM address 06H = bank 0, R6
MOV 10H, 25H ; RAM address 10H = bank 2, R0

25

REGISTER BANKS: STACK
• Stack

– A section of RAM used by CPU to temporarily store information
• First in last out (FILO)

– There are two 8051 instructions for stack
• PUSH reg: put the byte stored in the register into the top of the stack

– E.g. MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 6 ; push R6 into stack
PUSH 1 ; push R1 into stack
PUSH 4 ; push R4 into stack

• POP reg: pop out one byte from the top of the stack and save it in reg.
– E.g. POP 3

POP 5
POP 2

25H
12H
F3H

08H
09H
10H

26

REGISTER BANKS: STACK
• SP register

– How does the CPU know where is the top of the stack?
• The CPU has a special register, SP (statck pointer), to always point at the

top of the stack
– When 8051 is powered on, SP contains a value of 07H

• The first byte pushed into stack will be at 08H (register bank 1)
– Every time a PUSH is executed, SP will automatically increase by 1
– Every time a POP is executed, SP will automatically decrease by 1
– Demo

MOV R0, #25H
MOV R1, #12H
MOV R2, #0F3H
PUSH 0 ; push R6 into stack
PUSH 1 ; push R1 into stack
PUSH 2 ; push R4 into stack
POP 3
POP 4
POP 5

27

REGISTER BANKS: STACK
• SP register

– We can change the value of the SP register manually
• MOV SP, 30H

– Conflicts between register bank 1 and stack
• Register bank 1 and the default stack are using the same address (08H –

0FH)
• If in a program we need to use register bank 1, we need to reallocate the

stack to somewhere else (e.g. scratch pad, 30H)
– What if the stack is empty and we try to do POP (there are more POP than

PUSH)? (Demo stack)
• The SP will keep decreasing
• We should avoid unequal number of PUSH and POP in our program

– What if we keep PUSHing?
• The SP will keep increasing until we run out of memory.

– We should be very careful with stack during programing
• Plan a section of memory space for stack before programming
• Do not exceed the upper limit or lower limit of in program.

28

REGISTER: STACK
• Call instruction

– Whenever the “CALL” instruction is executed, CPU will use stack to
temporarily store information

• SP and stack contents will change
• We will discuss more details later

29

