Microprocessor
Ch.3 Jump, Loop, and Call

OUTLINE

 Loop and Jump instructions

e (Call instructions

 Time delay

LOOP: DJNZ

 DJNZ (decrease jump not zero)
— DIJNZ reg, label
* Decrement the reg by 1 (‘D’)

» Ifregis not zero (‘NZ), jump (‘J’) to the line specified by label; otherwise
exit the loop.

— Example (Demo loop)
MOV A, #0
MOV R2, #4
AGAIN: ADD A, #03
e DINZ R2, AGAIN ; reg: R2, lable: AGAIN

MOV RS, A
Loop 1 2 3 4
R2
A
 The maximum value that can be held in R2 is ; thus the loop can

be repeated for a maximum of times.

LOOP: DJNZ

* Loop inside a loop
— More loops can be achieved by embeding one loop inside another loop

— Example
MOV R1, #0H
MOV A, #55H
MOV R3, #3H
LOOP2: MOV R2, #2H
LOOP1: CPL A ; complement R1 register
c INC R1 ; Increment R1 by 1
DINZ R2, LOOPI |; jump back to again if R2-1 is not zero
DIJNZ R3, LOOP?2 [; jump back to NEXT if R3-1 is not zero

— Flow chart

— There are totally 2 x 3 = 6 loops

LOOP: CONDITIONAL JUMP INSTRUCTIONS

 JZ (jump if A =0)
— JZ label
— Example:
MOV A, #0FEH
ADD A, #1H
JZ OVER
ADD A, #1H
JZ OVER
ADD A, #1H
JZ OVER
OVER: MOV RO, #0H
— Note: JZ can only be used to test register A
* JNZ (jumpifA —«£ 0)
— JNZ label

— Example: write a program to determine if R5 contains 0. If so, put 55H in it; otherwise
do nothing (NOP)

MOV A, RS
INZ NEXT
MOV RS, #55H
NEXT: NOP ; No operation

LOOP: CONDITIONAL JUMP INSTRUCTIONS

e« JNC (jump if no carry)
— JNC label
— Jump to label if no carry (CY =0)

— Example: find the sum of 79H, F5H, and E2H. Put the sum in registers RO (low byte)
and RS (high byte)

MOV A, #0

MOV RO, A

MOV R5, A

MOV A, #79H ; A=A+ 79H =79H

ADD A, #0F5H ; A=7T9H + F5H

JINC N2 ; if CY == 0, jump to the next summation

INCR5 ; if CY == 1, increment RS to record the carry
N2: ADD A, #0E2H ; A=A+ E2H

JNCN3 ;if CY ==0, jump to the end

INCR5 ; if CY == 1, increment RS to record the carry

N3: MOV RO, A

NOP

LOOP: SHORT JUMP

e All conditional jumps are short jump

— Short jump: the address of the target must be within -128 to +127 bytes of the
current PC (program counter)

- E.g.

« Why -128 — 1272

Addr Opcode

0000 7400

0002 6003

0004 FA

0005 740A

0007 7A00 TAGT:

;Target (0007) — PC at JZ (0004)=7-4=3

MOV A, #0
JZ TAGT
MOV R2, A
MOV A, #10
MOV R2, #0

— Opcode of JZ: 01100000 xxxxxxxx (offset)
— Offset = address of target — PC at JZ (PC+2, in the example, it is 4)
— The offset 1s limited to 8 bits (-128 — 127)

— The length of short jump instructions is 2 bytes

— If we want to jump further than -128 or 127, we need to use more
bits to represent the jump offset.

LOOP: SHORT JUMP

 Example

— Find the offset of the forward jump instructions

' Mnemonic Operand
- ORG Q000

- .- MOV RO,#0O
MOV A, #55H |
S J7 . NEXT | o
. INC RO
¢ INC A

o INC A

.- ... ADD -A,#77h

... - JgNC OVER |
o CLR A
MOV RO,A .

MOV R1,A

.:; j - - MOV R2, 'A_

MOV R3,A -
ADD A, R3

L JNC AGAIN

-~ '8JMP HERE

LOOP: UNCONDITIONAL JUMP

« LJMP (long jump)
— LIMP label
— Jump to anywhere in the program
— Opcode (3 bytes)
* 00000010 A15-A8 A7-A0
« The 2" and 3" bytes represent the absolute address in ROM

» Review: PC has 16 bits =»ROM address range is 0000 - FFFFH =» 16
bits are enough to label any address in ROM

— Example

ORG OH
LIMP FARAWAY ; opcode 02F000H
ORG OF000H

FARAWAY: MOV A, 55H

LOOP: UNCONDITIONAL JUMP

10

SJMP (short jump)
— SIMP label

— Jump to an address within -128 — 127 of current PC

— Opcode (2 byte)

10000000 xxxxxxxx (offset)

— The calculation of offset is the same as conditional jumps (JZ, INZ, INC, ...)
— Example: find the offset of the SIMP instructions (xx and yy in the comments)

TAGTI:

TAGT2:

— What will happen if the target is out of the range of [-128, 127] of current PC?

ORG OH

SIMP TAGT1 ; opcode 80xxH
MOV A, #0 ; opcode 7400H
ORG 10

SIMP TAGT2
MOV A, #0
ORG 35

MOV A, #55H

; opcode 80yyH

OUTLINE

11

e (Call instructions

12
CALL INSTRUCTIONS

e Subroutine

— A section of code that can perform a specific task (e.g. introduce a certain
amount of delay)

— If a task needs to be performed frequently, it’s better to structure the
corresponding codes as a subroutine

e Save memory space
» Better program structure

— Subroutines are invoked by call instructions

* There are two call instructions in 8051
— LCALL (3 byte instruction)
» 16 bits (2 bytes) are used to represent target address
* Long call, the subroutine can be placed anywhere in the ROM
— ACALL (2 byte instruction)
» Absolute call
* Only 11 bits are used to represent target address
— The target address must be within 2K bytes of ACALL

CALL: LCALL

- LCALL

— Long call, 3-byte instruction
— OpCOdGZ 00010010 A15-A8 A7-AOQ ; the last two bytes are used to represent target address

— Can be used to call subroutines located anywhere within the 64KB of the
ROM.

— Example

ORG 0

BACK: MOV A, #55H
MOV P1, A ; send 55H to port 1
LCALL DELAY ; call the subroutine delay
MOV A, #0AAH
MOV P1, A ; send AAH to port 1
LCALL DELAY
SIMP BACK

ORG 300H
DELAY: MOV RS, #0FFH
AGAIN: DINZ R5, AGAIN
RET ; return to caller

END

CALL: CALL AND STACK

14

e (Call instructions and stack

After ‘LCALL’ is executed, the PC is changed to the starting address of the subroutine
* E.g. after LCALL, PC points to address 0300H

After the subroutine is done (‘RET’is executed), the PC goes back to the instruction that
follows ‘LCALL’

« E.g. after RET, PC points back to address 0007H (‘MOV A, #0AAH”)
How does the CPU know where the PC should point to after the subroutine? (DEMO)

» Before loading the PC with the address of the subroutine (0300H), the CPU
automatically push the address of the next instruction into stack.

« After RET is executed, the CPU automatically pop the address back to PC.

01 0000 ORG 0

g2 0ogn 7455 BACK: MOV A, #55H ;load A with B5H

003 0og2 F590 MOV Pl,4 ;eend 58H to port 1

004 . 0004120300 LCALL DELAY ;time delay

0080007 T4AR MOV L,H0BAH ;load A with AAH

006 . 0009 F590 MOV P1,2 ;aend AAH to port 1

Q07 - DOOB 120300 LCALIL DELAY

008 -000E BOFQ SJMP BACK ;keep doing this

009 0010

010 . 0010 ;——this is the delay subroutine 0A
011 0300 ORG 300H .

012 0300 DELAY : 09 00
013 D300 TDFF MOV RE5,#0FFH ;:R5=255"

014 Q302 DDFE = AGAIN: DINZ RE&, AGATN ;stay here

015 0304 22 RET ;return to caller 08 07
016 0305 END ;end of asm file

CALL: CALL AND STACK

15

« Call instructions and stack (Cont’d)
— Each address is 16 bits (recall: PC is a 16-bit register)
» Each PUSH can put in 8 bit = two PUSH instructions are used

» Similarly, two pop instructions are used to restore the address to PC.

— If you use stack in a subroutine, you MUST use EQUAL number of PUSH
and POP

* Unequal number of PUSH and POP will result in a wrong value being
restored (DEMO LCALL)

» When you exit a subroutine, the SP should always point to the return
address of the subroutine

CALL: CALL AND STACK

16

 Example
— Analyze the contents of the stack and PC

addr
0000
0002
0004
0006
0008
000B
000D

0300
0302
0304
0306
0308

Opcode

7455 BACK:

F590
7C99
D67
120300
T4AA
80F1

C004 TEST:

C005
D001
D002
22

MOV A, #55H
MOV P1, A
MOV R4, #99H
MOV RS, #67H
LCALL TEST
MOV A, #0AAH
SIMP BACK

ORG 300H
PUSH 4
PUSH 5
POP 1
POP2

RET

CALL: ACALL

17

« ACALL
— Absolute call, 2-byte instruction

— 11-bits are used to represent address offset
» The target address must be within 2K bytes of the address of ACALL

— The ONLY difference between ACALL and LCALL is the limit on target
address

 LCALL: 16 bits used to represent address = target can be anywhere
within 64K bytes

« ACALL: 11 bits used to represent address offset = target needs to be
within 2K bytes of the address of ACALL

— Using ACALL will save 1 byte of memory space.

OUTLINE

18

Time delay

19
DELAY: CLOCK V.S. MACHINE CYCLE

* Terminology oscillator 8051

— Clock
» A crystal oscillator is connected to 8051 to provide clock source for 8051.
» Typical clock frequency (f): 11.0592 MHz, 16 MHz, 20 MHz.
 Oscillator period (7):
— Machine cycle
» A basic operation performed by CPU to execute
an instruction.
* Original 8051
— 1 machine cycle = 12 oscillator periods
« DS89C450
— 1 machine cycle = 1 oscillator period

 Different instructions require different number of machine cycles oscillator
— E.g. original 8051
1 machine cycle: ADD, MOV R3, A
2 machine cycles: MOV 08, A
4 machine cycles: MUL, DIV
» Machine cycles can be found at Table A-1 in Appendix A (p.554).
[t takes different amount of time to execute different instructions.

DELAY

20

Example

— For an 8051 system with 1 machine
cycle = 12 oscillator periods. If the
clock frequency is 11.0592 MHz,

(1) What is the duration of 1
machine cycle?

(2) find how long it takes to execute
each of the following instructions

(a) MOV R3, #data
(b) MOV P3,R1

(c) NOP

(d) DINZ R2, AGAIN

Instruction Machine
Cycles
MOV Rn, A 1
MOV direct, Rn 2
NOP 1
DJNZ Rn, target 2

DELAY: LOOP

21

 Example:
— 1. For an 8051 system with 1 machine cycle = 12 oscillator periods. If the

clock frequency is 11.0592 MHz. Find the delay incurred by the subroutine.

ORG 300H
DELAY: MOV R3, #200 ; 1 machine cycle
HERE: DJNZ R3, HERE ; 2 machine cycle

RET ; 2 machine cycle

DELAY: DS89C450

22

DS89C450

— 1 machine cycle = 1 oscillator clock period
— The machine cycles for all instructions can be found in the user guide of DS89C4x0

Machine cycles

Instruction 8051 DS89C4x0
MOV R3.#value 1 2
DEC Rx 1 1
DINZ 2 4
LIMP 2 3
SIMP 2 3
NOP 1 1
MUL AB 4 9
— Example:

* A 89C450 is connected to an oscillator with frequency 11.0592MHz. Find
how long it takes to execute the following instruction

(a) MOV R3, #55 (b) DJNZ R2, target

DELAY: EMBEDDED LOOPS

23

Example

— A DS89C450 is connected to a 11.0592 MHz XTAL. Find the time delay in

the following subroutine

DELAY:

MOV R2, #200
AGAIN: MOV R3, #250
HERE: NOP

NOP

DINZ R3, HERE

DINZ R2, AGAIN

RET

; machine cycles

DELAY:

 Example

— Write a program to toggle all the bits of P1 every 200 ms (55H > AAH -
...) with DS89C450 and 11.0592 MHz XTAL.

MOV R1, #9
Al: MOV R2, #242
A2: MOV R3, #355
A3: DINZ R3, A3

DINZ R2, A2

DINZ R1, Al

