Microprocessor
Ch.4 1/0 Ports

OUTLINE

« 8051 I/O programming

* 1/0O bit manipulation programming

1/0 PORT

e [/O Port

— 8051 has 40 pins

— 32 pins are used for I/O ports
* 41/0 ports: PO, P1, P2, P3
» Each port has 8 bits (8 pins)
* Input mode and output mode

— When power on, all ports are used as input

by default.

* You can read data from the port

— Change a port to output mode

PDIP/Cerdip
o/
P1.O[]1 40 [Vee
P11]2 39 [P0.0 (ADO)
P12[]3 38 [] P0.1(AD1)
S A S
P15[]6 (8031) 35 [] P04 (AD4)
P16[]7 (89420) 34 [P05 (AD5)
P17]8 33 [J P0.6 (AD6)
RST[]9 32 [] P07 (AD7)
(RXD) P3.0[] 10 31 [] EAVPP
(TXD) P31 [N 30 [] ALE/PROG
(INTO) P3.2[] 12 29 [] PSEN
(INTT) P3.3[] 13 28 [P27 (A15)
(T0) P34 [] 14 27 [P26 (A14)
(T1)P35[] 15 26 [] P25 (A13)
(WR) P3.6[] 16 25 [] P24 (A12)
(RD) P3.7[]17 24 [] P23 (Al1)
XTAL2[] 18 23 [] P22 (A10)
XTAL1 [19 22 [P21 (A9)
GND[] 20 21 [] P20 (A8)

» Write all Os to a port will change it into output mode (MOV PO, #00H).
— If the ports are in output mode, and you want to read data from it, you must

change it to input mode first

* Write all Is to a port will change it into input mode (MOV P1, #FFH)

\ 4

MOV PO, #00H

A 4

write instructions

v

MOV PO, #FFH

v

read instructions

1/0 PORTS: PO

e Port0
— To use port 0 as both input and output, each pin must be connected externally

to 10K-Ohm pull-up resistor. (Open drain) .
— Port 0 as output %LLLLL

= = = <
= = =

PO.0O

A
¥
A

PO
PO.2

BACK: MOV A, #55H 8051 P03

0 uod

P0.4

MOV PO, A Po6

ACALL DELAY =
MOV A, #AAH

MOV Po, A

ACALL DELAY

SJMP BACK

— Port 0 as input

» After PO being used as output, we can switch it back to input mode by
writing 1 to all the bits

MOV A, #0FFH

MOV PO, A ; make PO an input port

MOV P1, #00H ; make P1 an output port (optional)
BACK: MOV A, PO ; get data from PO

MOV P1, A ; sent it to port 1

SIMP BACK

What will happen if we read a port while it’s in output mode?

1/0 PORTS: PO

 Input mode and output mode

— Ifa port has been used as output, we must change it to input mode before we
can read data from it

- Eg. 1l MOV PO, #23H ; output
MOV A, PO ; input, invalid

- E.g.2 MOV PO, #23H ; output
MOV PO, #0FFH ; change PO to input mode
MOV A, PO ; valid

— At any moment, you can always write data to a port regardless it has been
used as input or output in the previous instructions

» The change to output mode is optional

- Eg MOV PO, #25H ; PO used as output
MOV PO, #0FFH ; change PO to input mode
MOV A, PO ; PO used as input

MOV PO, #23H ; PO used as output (valid)

1/0 PORTS: PORT 1

Port1,2,3
— P1, P2, P3 can be used as both input and output

— They do NOT require pull-up resistors (it has pull-up resistors
inside the chip)

— When power on, the are input ports by default
Dual roles of ports

— PO, P1, P2, P3 can be used as general I/O ports. They can
also be used for some specific operations.

* PO: when external memory is connected to 8051, we
usually use Port 0 to serve as the interface for both

address bus and data bus (ADO — AD7)

« P2: For system with larger external memory , P2 is

used to serve as the interface for the high byte of
address (A8 — Al5)

* P3: P3 is usually used to provide interrupt signals.

PDIP/Cerdip
_/
P1.O]1 40 [Ve
P12 39 [J P0.0 (ADO)
P12[]3 38 [] P0.1 (AD1)
E:ig: 8051 2; g P0.2 (AD2)
! P0.3 (AD3)
P15[]6 (8031) 35 [] P04 (AD4)
P16[]7 (89420) 34 [P05 (ADS)
P17 8 33] P0.6 (AD6)
RST[]9 32 [] P07 (AD7)
(RXD) P3O] 10 31 [J EANPP
(TXD) P3.1 [11 30 [] ALE/PROG
(INTO) P32 [] 12 29 [] PSEN
(INT1) P3.3[] 13 28 [] P27 (A15)
(ToyP3.4[] 14 27 [P26 (A14)
(T1)P35[]15 26 [] P25 (A13)
(WR) P36[] 16 25 [P24 (A12)
RD) P37 [] 17 24 [] P23 (A1)
XTAL2 [] 18 23 [P22 (A10)
XTAL1 [] 19 22 [] P21 (A9)
(

GND [

20

21

[P20 (A8)

OUTLINE

* 1/0O bit manipulation programming

BIT MANIPULATION

I/0 port bit manipulation

We can access each individual bit of the I/O port
E.g. the 3rd bit of P3: P3.2

Example
BACK: SETB P1.2 ;set P1.2to 1
ACALL DELAY
CPL P1.2 ; complement P1.2
SIMP BACK

The ability to access single bit of I/O ports

is one of the most powerful features of PO Pl P2 P3 Port Bit
051, P0.0__P1.0__P20 P3.0_ DO
i e PO.1 Pl1.1 P21 P31 DI
« It greatly increases program flexibility P02 Pl2 P22 P32 Do
and 1s one of the main reasons many P03 P13 P23 P33 D3
. P04 P14 P24 P34 D4
designers choose 8051. 05 Pls s P35 D:
P06 P16 P26 P36 D6
P07 P1.7 P27 P37 D7

BIT MANIPULATION

 Example
— Create a square wave of 66% duty cycle on bit 3 of port 1.

e

BIT MANIPULATION: CONDITIONAL JUMP

10

* Conditional jump
— We can jump to a location based on the value of a particular bit
— Three instructions: JB, JNB, JBC
— JB: (jump if bit)
» JB bit, target
e Jump if bit=1
» Example: JB P2.4 HERE
— JNB: (jump if no bit)
« JNB bit, target
e Jump ifbit=0
« Example: INB P1.3 HERE
— JBC: (jump if bit, then clear)
» JBC bit, target
e (1) Jump if bit= 1, (2) then clear bit
« Example: JBC P0.4 HERE ; after execution, P0.4 will be 0

The bit must be in input mode while using the conditional jump!

BIT MANIPULATION: CONDITIONAL JUMP

11

 Example
— Write a program to perform the following
» Keep monitoring P1.2 bit until it becomes high
* When P1.2 becomes high, write value 45H to port 0
» Send a high-to-low pulse to P2.3

SETB P1.2 ; change P1.2 to input mode

HERE: JNBPI1.2, HERE
MOV PO, #45H

CLR P2.3 ; change P2.3 to output mode
SETB P2.3
CLR P2.3

BIT MANIPULATION: CONDITIONAL JUMP

 Example

— A switch is connected to P1.7. Write a program to check the status of the
switch and perform the following

* If SW =0, send the ASCII code of letter ‘N’ to P2
 If SW =1, send the ASCII code of letter ‘Y’ to P2

SETB P1.7 ; make P1.7 as input
START: JB P1.7 ONE ; jump if SW =1
ACALL WRITE N ; ifSW=0
SIMP START
ONE: ACALL WRITE Y ; ifSW=1
SIMP START
ORG 300H
WRITE N: MOV P2, #N’ ; write the ASCII code of ‘N’ to P2
RET
ORG 310H
WRITE Y: MOV P2, #Y’ ; write the ASCII code of ‘Y’ to P2

RET

BIT MANIPULATION: CARRY FLAG

13

* Read a single bit into the carry flag
— We can directly move a bit into carry flag in is the PSW register

— MOV, P1.2 ; read the value of P1.2 and save it into carry flag.

— Example:

* A switch is connected to pin P1.0 and an LED to pin P2.7. Write a
program to get the status of the switch and send it to the LED

SETB P1.0 ; set P1.7 to input mode
CLR P2.7

AGAIN: MOV C, P1.0 ; read P1.0 into C
MOV P2.7, C ; send C to P2.7

SIMP AGAIN

BIT MANIPULATION: LATCH

14

 Latch and port from/to CPU Px.y
<«—latch |[—

— Each pin 1s connected to a latch inside 8051 to CRU
— Review: latch is an digital device that can store one bit of information.

» If you write to a port (e.g. MOV P0.3, C), the value will be first written to
the latch, then the contents of the latch will change the signal at the pin.

 If you read from a port (e.g. MOV C, P0.3), you need to write ‘1’ to the
port to change it to input mode, then the signal will be directly read to the
CPU without using the latch.

* Read-Write-Modify instructions

— Read the contents in latch (read) = change its value and write it back to latch
(write) = the value in latch will change the signal at pin

— E.g. CPL P1.2 ; complement the value of Pin P1.2
— The execution of the instruction incurs the following sequence of actions
* Reads the internal latch of the port, and brings that data into the CPU.
 This data is complemented
» The result is written back to the port latch
* The port pin data is changed and now has the same value of port latch.

BIT MANIPULATION: LATCH

15

 Read-Modify-Write instructions (Cont’d)
— XRLPI1, A ; exclusive or logic
— The execution of the instruction incurs the following sequence of actions
» Reads the internal latch of the port, and brings that data into the CPU.
» This data is EX-ORed with the contents of register A
» The result 1s written back to the port latch

* The port pin data is changed and now has the same value of port latch.

— We can read the contents of port latch while it’s in output mode.

— Example
MOV P1, #55H
MOV A, #0FFH
AGAIN: XRLPI, A ; EX-OR P1 with 11111111
ACALL DELAY

SIMP AGAIN

