
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.4 I/O Ports

Dr Jingxian WuDr. Jingxian Wu
wuj@uark.edu

2

OUTLINE

• 8051 I/O programming

• I/O bit manipulation programming

I/O PORT
3

• I/O Port
– 8051 has 40 pins
– 32 pins are used for I/O ports

• 4 I/O ports: P0, P1, P2, P3
• Each port has 8 bits (8 pins)

• Input mode and output mode
– When power on, all ports are used as input

by default.
• You can read data from the port

– Change a port to output mode
• Write all 0s to a port will change it into output mode (MOV P0, #00H).

– If the ports are in output mode, and you want to read data from it, you must
change it to input mode first

• Write all 1s to a port will change it into input mode (MOV P1, #FFH)

MOV P0, #00H write instructions MOV P0, #FFH read instructions

I/O PORTS: P0
P t 0

4

• Port 0
– To use port 0 as both input and output, each pin must be connected externally

to 10K-Ohm pull-up resistor. (Open drain)
– Port 0 as outputPort 0 as output

BACK: MOV A, #55H
MOV P0, A
ACALL DELAYACALL DELAY
MOV A, #AAH
MOV P0, A
ACALL DELAY
SJMP BACKSJMP BACK

– Port 0 as input
• After P0 being used as output, we can switch it back to input mode by

writing 1 to all the bits
MOV A, #0FFH
MOV P0, A ; make P0 an input port
MOV P1, #00H ; make P1 an output port (optional)

BACK: MOV A, P0 ; get data from P0
MOV P1, A ; sent it to port 1
SJMP BACK

What will happen if we read a port while it’s in output mode?

I/O PORTS: P0
• Input mode and output mode

– If a port has been used as output, we must change it to input mode before we
can read data from it

E 1 MOV P0 #23H• E.g. 1 MOV P0, #23H ; output
MOV A, P0 ; input, invalid

• E.g. 2 MOV P0, #23H ; output
MOV P0, #0FFH ; change P0 to input mode
MOV A, P0 ; valid

– At any moment, you can always write data to a port regardless it has been
used as input or output in the previous instructions

• The change to output mode is optional
E MOV P0 #25H P0 d t t• E.g. MOV P0, #25H ; P0 used as output

MOV P0, #0FFH ; change P0 to input mode
MOV A, P0 ; P0 used as input
MOV P0 #23H P0 d t t (lid)MOV P0, #23H ; P0 used as output (valid)

I/O PORTS: PORT 1
P t 1 2 3

6

• Port 1, 2, 3
– P1, P2, P3 can be used as both input and output
– They do NOT require pull-up resistors (it has pull-up resistors

i id th hi)inside the chip)
– When power on, the are input ports by default

• Dual roles of ports
– P0, P1, P2, P3 can be used as general I/O ports. They can

also be used for some specific operations.
• P0: when external memory is connected to 8051, we

usually use Port 0 to serve as the interface for both
address bus and data bus (AD0 – AD7)

• P2: For system with larger external memory , P2 is
used to serve as the interface for the high byte of
address (A8 – A15)

• P3: P3 is usually used to provide interrupt signals.

7

OUTLINE

• 8051 I/O programming

• I/O bit manipulation programming

BIT MANIPULATION
8

• I/O port bit manipulation
– We can access each individual bit of the I/O port
– E.g. the 3rd bit of P3: P3.2
– Example

BACK: SETB P1.2 ; set P1.2 to 1
ACALL DELAY
CPL P1.2 ; complement P1.2
SJMP BACK

The ability to access single bit of I/O ports– The ability to access single bit of I/O ports
is one of the most powerful features of
8051.

• It greatly increases program flexibility• It greatly increases program flexibility
and is one of the main reasons many
designers choose 8051.

BIT MANIPULATION
9

• Example
– Create a square wave of 66% duty cycle on bit 3 of port 1.

2T T
3

2T
3
T

BIT MANIPULATION: CONDITIONAL JUMP
10

• Conditional jump
– We can jump to a location based on the value of a particular bit
– Three instructions: JB, JNB, JBC
– JB: (jump if bit)

• JB bit, target
• Jump if bit = 1
• Example: JB P2.4 HERE

– JNB: (jump if no bit)
• JNB bit, target
• Jump if bit = 0
• Example: JNB P1.3 HERE

– JBC: (jump if bit, then clear)
• JBC bit, target
• (1) Jump if bit = 1, (2) then clear bit
• Example: JBC P0.4 HERE ; after execution, P0.4 will be 0

The bit must be in input mode while using the conditional jump!

BIT MANIPULATION: CONDITIONAL JUMP
11

• Example
– Write a program to perform the following

• Keep monitoring P1.2 bit until it becomes high
• When P1.2 becomes high, write value 45H to port 0
• Send a high-to-low pulse to P2.3

SETB P1.2 ; change P1.2 to input mode

HERE: JNB P1.2, HERE
MOV P0, #45H

CLR P2.3 ; change P2.3 to output mode
SETB P2.3
CLR P2.3

BIT MANIPULATION: CONDITIONAL JUMP
E l

12

• Example
– A switch is connected to P1.7. Write a program to check the status of the

switch and perform the following
• If SW = 0 send the ASCII code of letter ‘N’ to P2If SW 0, send the ASCII code of letter N to P2
• If SW = 1, send the ASCII code of letter ‘Y’ to P2

SETB P1.7 ; make P1.7 as input
START: JB P1.7 ONE ; jump if SW = 1

ACALL WRITE_N ; if SW = 0
SJMP START

ONE: ACALL WRITE_Y ; if SW = 1
SJMP START

;--
ORG 300H

WRITE_N: MOV P2, #’N’ ; write the ASCII code of ‘N’ to P2
RET

;--
ORG 310H

WRITE_Y: MOV P2, #’Y’ ; write the ASCII code of ‘Y’ to P2
RETRET

;--

BIT MANIPULATION: CARRY FLAG
13

• Read a single bit into the carry flag
– We can directly move a bit into carry flag in is the PSW register
– MOV C, P1.2 ; read the value of P1.2 and save it into carry flag.
– Example:

• A switch is connected to pin P1.0 and an LED to pin P2.7. Write a
program to get the status of the switch and send it to the LED

SETB P1.0 ; set P1.7 to input mode
CLR P2.7

AGAIN: MOV C P1 0 ; read P1 0 into CAGAIN: MOV C, P1.0 ; read P1.0 into C
MOV P2.7, C ; send C to P2.7
SJMP AGAIN

BIT MANIPULATION: LATCH
L t h d t

14

• Latch and port
– Each pin is connected to a latch inside 8051
– Review: latch is an digital device that can store one bit of information.

• If you write to a port (e g MOV P0 3 C) the value will be first written to

latch
Px.yfrom/to CPU

to CPU

• If you write to a port (e.g. MOV P0.3, C), the value will be first written to
the latch, then the contents of the latch will change the signal at the pin.

• If you read from a port (e.g. MOV C, P0.3), you need to write ‘1’ to the
port to change it to input mode, then the signal will be directly read to the
C i h i h l hCPU without using the latch.

• Read-Write-Modify instructions
– Read the contents in latch (read) � change its value and write it back to latch

(write)� the value in latch will change the signal at pin(write)� the value in latch will change the signal at pin

– E.g. CPL P1.2 ; complement the value of Pin P1.2
– The execution of the instruction incurs the following sequence of actionsg q

• Reads the internal latch of the port, and brings that data into the CPU.
• This data is complemented
• The result is written back to the port latch
• The port pin data is changed and now has the same value of port latch.

BIT MANIPULATION: LATCH
15

• Read-Modify-Write instructions (Cont’d)
– XRL P1, A ; exclusive or logic
– The execution of the instruction incurs the following sequence of actions

• Reads the internal latch of the port, and brings that data into the CPU.
• This data is EX-ORed with the contents of register A
• The result is written back to the port latch
• The port pin data is changed and now has the same value of port latch.

– We can read the contents of port latch while it’s in output mode.
– Example

MOV P1, #55H
MOV A, #0FFH

AGAIN: XRL P1, A ; EX-OR P1 with 11111111
ACALL DELAYACALL DELAY
SJMP AGAIN

