
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.5 Addressing Modes

Dr Jingxian WuDr. Jingxian Wu
wuj@uark.edu

2

OUTLINE

• Immediate and register addressing modes

• Accessing memory using various addressing mode

• Bit addresses for I/O and RAM• Bit addresses for I/O and RAM

• Extra 128-byte on-chip RAMs

IMMEDIATE AND REGISTER: ADDRESSING MODE
3

• Addressing mode
– The CPU can access data in various ways.

• E.g. the data can be in a register, in memory, or provided as immediate
l (#34H)value (#34H).

– There are 5 different addressing modes for 8051
• Immediate (ch. 5.1)

i (h)• Register (ch. 5.1)
• Direct (ch. 5.2)
• Register indirect (ch. 5.2)
• Indexed (ch. 5.2)

IMMEDIATE AND REGISTER: IMMEDIATE
4

• Immediate addressing mode
– The source operand is a constant
– E.g. MOV A, #25H

MOV R3, #62
MOV DPTR, #4521H ; DPTR is a 16-bit register

– DPTR: (data pointer)
• A 16 bit register usually used to store ROM address (recall: PC is 16 bit)• A 16-bit register, usually used to store ROM address (recall: PC is 16-bit)
• High byte: DPH, low byte: DPL.

MOV DPH, #45H

MOV DPL #21H ; the same as MOV DPTR #4521HMOV DPL, #21H ; the same as MOV DPTR, #4521H

• The following instructions are illegal
MOV DPTR #9F235H ; req ire more than 16 bitMOV DPTR, #9F235H ; require more than 16-bit
MOV DPTR, #68975 ; FFFFH = 65535

IMMEDIATE AND REGISTER: IMMEDIATE
I di (C ’d)

5

• Immediate (Cont’d)
– Some special cases of immediate addressing mode
– 1. Using the EQU directive

COUNT EQU 25H
MOV A, #COUNT ; opcode: 7425H

• The above two lines are exactly the same as MOV A, #25H (opcode:
7425H)7425H)

• CPU doesn’t know the existence of “COUNT EAU 25H” (pseudo-code)
• The name COUNT is only used to improve program readability and

programming efficiency.p g g y
– 2. Using address labels

MOV DPTR, #MYDATA ; (DPTR) = 200H
ORG 200H

MYDATA: DB 23H, 35H
• #MYDATA is the address of the contents 2335H in ROM
• NOTE: MOV DPTR, MYDATA is illegal

– 3. ASCII code
MOV A, #’A’ ; the ASCII code of ‘A’ is loaded into register A.

IMMEDIATE AND REGISTER: REGISTER
6

• Register addressing mode
– Use register to hold the data to be manipulated
– Example

MOV A, R0
MOV R2, A
MOV R7, DPL
MOV DPH #23MOV DPH, #23

– Notes
• MOV R2, R5 is invalid.

MOV A DPTR i i lid (h ?)• MOV A, DPTR is invalid (why?)

7

OUTLINE

• Immediate and register addressing modes

• Accessing memory using various addressing mode

• Bit addresses for I/O and RAM• Bit addresses for I/O and RAM

• Extra 128-byte on-chip RAMs

ADDRESSING MEMORY: DIRECT
• There are 3 different addressing mode to access memory

8

• There are 3 different addressing mode to access memory
– Direct: use the address of the memory
– Register indirect: use register to store RAM address
– Indexed: use DPTR register to store ROM address

• Direct addressing mode (used to access RAM)
– Review: RAM (128 bytes. Address 00H – 7FH)

• 00H – 1FH (32 bytes, Register banks and stack)
• 20H – 2FH (16 bytes bit addressable space will be discussed in Sect 5 3)• 20H 2FH (16 bytes, bit addressable space, will be discussed in Sect. 5.3)
• 30H – 7FH (80 bytes, scratch pad, temporary store data)

– Example 1 (demo memory address)
MOV R0, 40H ; move the RAM contents with address 40H into R0

(0) (40); (R0) = (40H)
MOV R0, #40H ; move 40H into R0. (R0) = 40H

– Example 2

F3H
3FH
40H
41H

p
MOV 40H, #0F3H ; (40H) = F3H
MOV A, 40H ; (A) = (40H) = F3H
MOV 35H, A ; (35H) = (A) = F3H
MOV 56H 35H ; (56H) = (35H) = F3H

RAMaddress

MOV 56H, 35H ; (56H) = (35H) = F3H
MOV #23H, 35H ; illegal

ADDRESSING MEMORY: DIRECT
9

• Direct address mode for R0 – R7
– Register R0 – R7 can be access by either using their names (Rx) or their

addresses
E MOV A 2 h MOV A R2 b diff f MOV A #2– E.g. MOV A, 2 ; the same as MOV A, R2, but different from MOV A, #2

MOV 7, 2 ; copy the contents of R2 to R7: (R7) = (R2)
recall: MOV R7, R2 is invalid, but MOV 7, 2 is valid!

• Direct address mode for SFR (special function registers)
– Special function registers: A, B, PSW, DPTR, P0, P1, P2, P3, ……
– Each SFR has its own address in the range between 80H – FFH (recall: address

f 128 b RAM i 00H 7FH)range for 128-byte RAM is: 00H – 7FH)
– The SFRs can either be accessed by their names (e.g. MOV A, #24H) or their

addresses (e.g. MOV 0E0H, #24H)
The address of some commonly used SFRs– The address of some commonly used SFRs

• A: E0H, B: F0H, P0: 80H,
• P1: 90H, P2: A0H, P3: B0H

MOV 90H A th MOV P1 AMOV 90H, A ; the same as MOV P1, A
MOV 0F0H, R0 ; the same as MOV B, R0

ADDRESSING MODE: DIRECT
10

• Stack and direct addressing mode
– One of the main application of direct addressing mode is for stack
– The operand of PUSH and POP must be addresses instead of register names

• PUSH addr
– Example

• PUSH A is illegal
• PUSH 0E0H ; push the contents of register A into stack

PUSH 5 ; push R5 of register bank 0 into stack
PUSH 6 ; push R6 of register bank 0 into stack
PUSH 0E0H ; push register A into stack
PUSH 0F0H ; pop top of stack into register B
POP 2 ; pop top of stack into R2 of register bank 0POP 2 ; pop top of stack into R2 of register bank 0
POP 15 ; pop top of stack into R5 of register bank 2.

ADDRESSING MODE: REGISTER INDIRECT
11

• Register indirect addressing mode
– The register is used as a pointer to the data (similar to the pointer in C language)

• The register stores the address of the data to be accessed
E g– E.g.

MOV R0, #05H
MOV A, @R0 ; move the contents of RAM location whose address is

; stored in R0 into A: (A) = (05H), equivalent to MOV A, 05H
MOV A, R0 ; (A) = (R0) = 05H, equivalent to MOV A, #05H, ; () () , q ,

– If the data is in the uC (e.g. 128 bytes RAM), only R0 and R1 can be used for register
indirect addressing mode

– E.g. Find the contents in RAM and registers after each step
MOV 32H, #10H
MOV R0, 32H
MOV R1, #45H
MOV @R1, R0
MOV A R1MOV A, R1
MOV A, @R1
MOV @R0, A

– Limitation: R0, R1 are 8-bit registers � register indirect mode can only access on chip
RAMRAM

ADDRESSING MODE: REGISTER INDIRECT
12

• Why register indirect addressing mode?
– Makes it possible to access a group of data through loop
– E.g. Write a program to copy a block of 10 bytes of data from RAM locations

i 35H RAM l i i 60Hstarting at 35H to RAM locations starting at 60H

COUNT EQU 10
MOV R0 #35HMOV R0, #35H
MOV R1, #60H
MOV R3, #COUNT

BACK: MOV A, @R0 ; (A) = (R0)
MOV @R1, A ; (R1) = (A)
INC R0 ; increment (R0) by 1
INC R1 ; increment (R1) by 1
DJNZ R3, BACK

ADDRESSING MODE: INDEXED MODE
13

• Indexed address mode
– Access a group of data stored in ROM using DPTR register (16-bit register)

• Recall: register indirect mode: access a group of data stored in RAM using R0 and
R1R1

– Syntax: MOVC A, @A+DPTR ; (A) = (A+DPTR)
• MOVC: move the data stored in ROM,
• Recall; MOV can only move data in RAM

– Example: Assume ROM space starting at 300H contains “ELEG”. Write a program to
transfer bytes into RAM locations starting at 50H. (Demo)

MOV DPTR, #MYDATA ; ROM pointer, or MOV DPTR, #300H
MOV R0, #50H ; RAM pointerOV 0, #50 ; po te
MOV R2, #4 ; counter, 4 bytes

BACK: CLR A
MOVC A, @A+DPTR ; move data from ROM to A
MOV @R0, A ; move data from A to RAM
INC DPTR
INC R0
DJNZ R2, BACK

ORG 300HORG 300H
MYDATA: DB “ELEG”

END

ADDRESSING MODE: INDEXED MODE
14

• MOVC
– It has only two possible instructions

• MOVC A, @A+DPTR
• MOVC A, @A+PC

– Any other usage MOVC is not allowed, e.g
• MOVC A, @DPTR ; invalid
• MOVC A, @R0+DPTR ; invalid
• MOVC A, #23H ; invalid

– Data cannot be moved directly from ROM to RAM, or the other way around
• Must use A as an intermediate register

ADDRESSING MODE: INDEXED MODE
15

• Look up table (LUT)
– Use a table to store commonly used numbers
– E.g. write a program to calculate for x in the rage in 0 to 9

• It’s computationally expensive to calculate in real time2x

Index (x)

0 0

1 1

2x

2x
• It s computationally expensive to calculate in real time
• Use a table to store the value of

x
2 4

3 9

4 16

2x

ORG 0
MOV DPTR #TABLE th ROM l ti f LUT 5 25

6 36

7 49

MOV DPTR, #TABLE ; the ROM location of LUT
MOV P1, #0FFH ; set P1 as input

BACK: MOV A, P1 ; read x from port 1
MOVC A, @A+DPTR ; find from LUT, move it to A 2x

8 64

9 81

MOV P2, A ; send results to P2
SJMP BACK

ORG 300H
TABLE: DB 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

END

16

OUTLINE

• Immediate and register addressing modes

• Accessing memory using various addressing mode

• Bit addresses for I/O and RAM• Bit addresses for I/O and RAM

• Extra 128-byte on-chip RAMs

BIT ADDRESS: BIT-ADDRESSABLE RAM
17

• Bit-addressable RAM
– RAM space 20H – 2FH (16 bytes = 128 bits) is bit-addressable
– We can access each individual bit in RAM space 20H – 2FH
– Bit address v.s. byte address

• Bit address range: 00H – 7FH (128 bits)
• Byte address range: 20H – 2FH (16 bytes)

• Bit 00H: bit 0 of byte 20H
• Bit 01H: bit 1 of byte 20H
• …
• Bit 07H: bit 7 of byte 20H
• Bit 08H: bit 0 of byte 21H
• ….
• Bit 78H: bit 0 of byte 2FH
• …
• Bit 7FH: bit 7 of byte 2FH

How do we tell if an address is bit address or byte address? (e.g. 08H)

BIT ADDRESS: BIT-ADDRESSABLE RAM
18

• Bit-addressable RAM
– Bit addresses can only be used by bit addressable instructions

MOV bit, C move contents of carry flag to a bit

• If an address is used by the above bit instructions, then it’s a bit address
• Address used by all other instructions are byte address.

E Fi d t hi h b t h f th f ll i bit b l– E.g. Find out which byte each of the following bit belongs
SETB 42H
CLR 0FH
CPL 12

– E.g. save the status of bit P1.7 to bit address 05
SETB P1.7
MOV C, P1.7
MOV 05, C ; MOV 05, P1.7 is illegal

BIT ADDRESS: BIT MEMORY MAP
I/O t d i t bit dd bl

19

• I/O port and some registers are bit addressable
– I/O port: P0, P1, P2, P3

• E.g. P0.2, P1.4
Registers: A B PSW IP IE ACC SCON TCON– Registers: A, B, PSW, IP, IE, ACC, SCON, TCON

• E.g. PSW.3, A.4, ACC.0
– Each addressable bit has its unique address

• E.g. the bit address of P0.2 is 82H,E.g. the bit address of P0.2 is 82H,
• the bit address of PSW.3 is D3H

• Bit address map
– 00H – 7FH (128 bits): bit addressable RAM()
– 80H – 87H (8 bits): P0
– 88H – 8FH (8 bits): TCON
– 90H – 9FH (8 bits): P1
– …
– D0H – D7H (8 bits): PSW
– …

F0 F7H (8 bit) B– F0 – F7H (8 bits): B

BIT ADDRESS: DIRECTIVES
20

• BIT directive
– Assign a name to a bit, improve code readability and code efficiency.
– E.g.

SW BIT P2.3
LED BIT P0.1
MOV C, SW ; the assembler will replace SW with the address of P2.3,
MOV LED, C ; the assembler will replace LED with the address of P0.1MOV LED, C ; the assembler will replace LED with the address of P0.1

• EQU directive
– EQU directive can also be used to assign name to bit. The assembler will

determine if it’s a bit address or byte address based on contexty
– E.g.

SW EQU 97H
MYDATA EQU 0A0H

MOV C, SW ; SW is a bit address
MOV MYDATA, #32H ; MYDATA is a byte address

21

OUTLINE

• Immediate and register addressing modes

• Accessing memory using various addressing mode

• Bit addresses for I/O and RAM• Bit addresses for I/O and RAM

• Extra 128-byte on-chip RAMs

EXTRA RAM
22

• Extra 128-byte RAM
– 8051 has 128 bytes on-chip RAM (address: 00H – 7FH)
– 8052 has 256 bytes on-chip RAM

• DS89C4x0 is 8052 compatible� it has 256 bytes RAM• DS89C4x0 is 8052 compatible� it has 256 bytes RAM
• Address map for chips with 256 bytes RAM

– The first 128 bytes: 00H – 7FH
– The extra 128 bytes (“upper memory”): 80H – FFHThe extra 128 bytes (upper memory): 80H FFH

• Problem: the address range 80H – FFH has already been
assigned to SFR (e.g. A, B, PSW, DPTR, P0, P1, P2, P3, etc.)

– Upper memory and SFR use the same address space!
• Physically they are separate

– How do we distinguish between upper memory and SFR?
• To access SFR, we use direct addressing mode or register name

– E g MOV 90H #55H ; equivalent to MOV P1 #55HE.g. MOV 90H, #55H ; equivalent to MOV P1, #55H
• To access upper memory, we use indirect addressing mode

– E.g. MOV R0, 90H
MOV @R0, #55H ; (90H) = 55H

EXTRA RAM
23

• Display the contents of upper RAM in Keil
– In the memory panel, use I: (demo)
– C: 80H (display ROM contents)
– D: 20H (display RAM contents)
– I: 80H (display upper RAM contents)

