Microprocessor
Ch.5 Addressing Modes

OUTLINE

Immediate and register addressing modes

Accessing memory using various addressing mode

Bit addresses for I/O and RAM

Extra 128-byte on-chip RAMs

IMMEDIATE AND REGISTER: ADDRESSING MODE

* Addressing mode
— The CPU can access data in various ways.

» E.g. the data can be in a register, in memory, or provided as immediate
value (#34H).

— There are 5 different addressing modes for 8051
* Immediate (ch. 5.1)
* Register (ch. 5.1)
* Direct (ch. 5.2)
» Register indirect (ch. 5.2)
» Indexed (ch. 5.2)

IMMEDIATE AND REGISTER: IMMEDIATE

 Immediate addressing mode
— The source operand is a constant

— E.g. MOV A, #25H
MOV R3, #62
MOV DPTR, #4521H ; DPTR is a 16-bit register

— DPTR: (data pointer)
* A 16-bit register, usually used to store ROM address (recall: PC is 16-bit)
» High byte: DPH, low byte: DPL.
MOV DPH, #45H
MOV DPL, #21H ; the same as MOV DPTR, #4521H

* The following instructions are illegal

MOV DPTR, #9F235H ; require more than 16-bit
MOV DPTR, #68975 ; FFFFH = 65535

DPTR L DPH ﬂ DPL]

PC | PC (program counter) |

IMMEDIATE AND REGISTER: IMMEDIATE

 Immediate (Cont’d)
— Some special cases of immediate addressing mode
— 1. Using the EQU directive

COUNT EQU 25H
MOV A, #COUNT ; opcode: 7425H

* The above two lines are exactly the same as MOV A, #25H (opcode:
7425H)

* CPU doesn’t know the existence of “COUNT EAU 25H” (pseudo-code)

* The name COUNT is only used to improve program readability and
programming efficiency.

— 2. Using address labels
MOV DPTR, #MYDATA ; (DPTR) =200H
ORG 200H
MYDATA: DB 23H, 35H
« #MYDATA is the address of the contents 2335H in ROM
« NOTE: MOV DPTR, MYDATA is illegal
— 3. ASCII code
MOV A, #A° ; the ASCII code of ‘A’ is loaded into register A.

IMMEDIATE AND REGISTER: REGISTER

* Register addressing mode
— Use register to hold the data to be manipulated

— Example
MOV A, RO
MOV R2, A
MOV R7, DPL
MOV DPH, #23
— Notes

« MOV R2, R5 is invalid.
« MOV A, DPTR is invalid (why?)

OUTLINE

e Accessing memory using various addressing mode

ADDRESSING MEMORY: DIRECT

* There are 3 different addressing mode to access memory
— Direct: use the address of the memory
— Register indirect: use register to store RAM address
— Indexed: use DPTR register to store ROM address
* Direct addressing mode (used to access RAM)
— Review: RAM (128 bytes. Address 00H — 7FH)
* OOH - 1FH (32 bytes, Register banks and stack)
« 20H — 2FH (16 bytes, bit addressable space, will be discussed in Sect. 5.3)
* 30H - 7FH (80 bytes, scratch pad, temporary store data)
— Example 1 (demo memory address)

] Scratch Pad RAM

. Register Bank 1 (Stack)

] Register Bank 0

MOV RO, 40H ; move the RAM contents with address 40H into RO
; (RO) = (40H)
MOV RO, #40H ; move 40H into R0O. (R0) = 40H 41H
40H F3H
3FH

— Example 2
MOV 40H, #0F3H ; (40H) = F3H address ~ RAM
MOV A, 40H ; (A) = (40H) = F3H
MOV 35H, A : (35H) = (A) = F3H
MOV 56H, 35H - (56H) = (35H) = F3H

MOV #23H, 35H ; illegal

ADDRESSING MEMORY: DIRECT

* Direct address mode for R0 — R7
— Register RO — R7 can be access by either using their names (Rx) or their

addresses
— E.g. MOV A, 2 ; the same as MOV A, R2, but different from MOV A, #2
MOV 7,2 ; copy the contents of R2 to R7: (R7) = (R2)

recall: MOV R7, R2 is invalid, but MOV 7, 2 1s valid!

* Direct address mode for SFR (special function registers)
— Special function registers: A, B, PSW, DPTR, PO, P1, P2, P3,

— Each SFR has its own address in the range between 80H — FFH (recall: address
range for 128-byte RAM is: 00H — 7FH)

— The SFRs can either be accessed by their names (e.g. MOV A, #24H) or their
addresses (e.g. MOV OEOH, #24H)

— The address of some commonly used SFRs

 A: EOH, B: FOH, PO: 80H,
 P1:90H, P2: AOH, P3: BOH
MOV 90H, A ; the same as MOV P1, A

MOV 0FOH, RO ; the same as MOV B, R0

ADDRESSING MODE: DIRECT

10

Stack and direct addressing mode

— One of the main application of direct addressing mode is for stack

— The operand of PUSH and POP must be addresses instead of register names

» PUSH addr
— Example
« PUSH A is illegal

« PUSH OEOH ; push the contents of register A into stack

PUSH 5
PUSH 6
PUSH 0EOH
PUSH 0FOH
POP 2

POP 15

; push R5 of register bank 0 into stack

; push R6 of register bank 0 into stack

; push register A into stack

; pop top of stack into register B

; pop top of stack into R2 of register bank 0

; pop top of stack into R5 of register bank 2.

ADDRESSING MODE: REGISTER INDIRECT

11

* Register indirect addressing mode

The register 1s used as a pointer to the data (similar to the pointer in C language)
» The register stores the address of the data to be accessed

E.g.
MOV RO, #05H
MOV A, @RO ; move the contents of RAM location whose address is
; stored in RO into A: (A) = (05H), equivalent to MOV A, 05H
MOV A, RO ; (A) = (R0O) = 05H, equivalent to MOV A, #05H

If the data 1s in the uC (e.g. 128 bytes RAM), only RO and R1 can be used for register
indirect addressing mode

E.g. Find the contents in RAM and registers after each step

MOV 32H, #10H
MOV RO, 32H
MOV R1, #45H
MOV @R1, RO
MOV A, R1
MOV A, @R1
MOV @RO, A

Limitation: RO, R1 are 8-bit registers = register indirect mode can only access on chip
RAM

ADDRESSING MODE: REGISTER INDIRECT

12

* Why register indirect addressing mode?
— Makes it possible to access a group of data through loop

— E.g. Write a program to copy a block of 10 bytes of data from RAM locations
starting at 35H to RAM locations starting at 60H

COUNT EQU 10
MOV RO, #35H
MOV RI1, #60H
MOV R3, #COUNT
BACK: MOV A, @RO ; (A) = (RO)
MOV @R1, A ; (R1)=(A)
INC RO ; increment (RO) by 1
INCRI1 ; increment (R1) by 1

DJNZ R3, BACK

ADDRESSING MODE: INDEXED MODE

e Indexed address mode
— Access a group of data stored in ROM using DPTR register (16-bit register)

» Recall: register indirect mode: access a group of data stored in RAM using RO and
R1

— Syntax: MOVC A, @A+DPTR ; (A) = (A+DPTR)
« MOVC: move the data stored in ROM,
* Recall; MOV can only move data in RAM

— Example: Assume ROM space starting at 300H contains “ELEG”. Write a program to
transfer bytes into RAM locations starting at SOH. (Demo)

MOV DPTR, #MYDATA ; ROM pointer, or MOV DPTR, #300H

MOV RO, #50H ; RAM pointer
MOV R2, #4 ; counter, 4 bytes

BACK: CLR A
MOVC A, @A+DPTR ; move data from ROM to A
MOV @RO, A ; move data from A to RAM
INC DPTR
INCRO

DINZ R2, BACK

ORG 300H
MYDATA: DB “ELEG”
END

ADDRESSING MODE: INDEXED MODE

14

« MOVC
— It has only two possible instructions
« MOVC A, @A+DPTR
« MOVC A, @A+PC
— Any other usage MOVC is not allowed, e.g

« MOVC A, @DPTR ; invalid
« MOVC A, @RO+DPTR ; invalid
« MOVC A, #23H ; invalid

— Data cannot be moved directly from ROM to RAM, or the other way around

» Must use A as an intermediate register

ADDRESSING MODE: INDEXED MODE

15

* Look up table (LUT)

— Use a table to store commonly used numbers

— E.g. write a program to calculate x’ for x in the rage in 0 to 9

« It’s computationally expensive to calculate x* in real time

+ Use a table to store the value of x>

BACK:

TABLE:

ORG 0

MOV DPTR, #TABLE ; the ROM location of LUT
MOV P1, #0FFH ; set P1 as input

MOV A, P1 ; read x from port 1

MOVC A, @A+DPTR ; find x? from LUT, move it to A
MOV P2, A ; send results to P2

SIMP BACK

ORG 300H

DB O, 1, 4,9, 16, 25, 36, 49, 64, 81
END

Index (x) X2
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

OUTLINE

16

 Bit addresses for I/O and RAM

17
BIT ADDRESS: BIT-ADDRESSABLE RAM

* Bit-addressable RAM
— RAM space 20H — 2FH (16 bytes = 128 bits) is bit-addressable
— We can access each individual bit in RAM space 20H — 2FH
— Bit address v.s. byte address
» Bit address range: 00H — 7FH (128 bits)
» Byte address range: 20H — 2FH (16 bytes)

Scratch Pad RAM

Bit-Addressable RAM

t_ Register Bank 3
-'a Register Bank 2
Register Bank 1 (Stack)

5 Register Bank 0

 Bit O0H: bit 0 of byte 20H e

« Bit 01H: bit 1 of byte 20H)

. . . 2F 7F 7E 7D 7C 7B TA 79 78
 Bit O7H: blt 7 Of byte 20H 2E [77 76 75 74 73 72 71 70
2D 6F 6E 6D 6C 6B AR 69 &8
[67 66 &5 64 63 62 61 &0

- Bit 08H: bit 0 of byte 21H ;| SoEasEaaes
5 22 |57 56 55 54 53 52 51 50

=2 29 |4F 4F 4D 4C 4B 4A 49 48

° Z_| _ 28 |47 46 45 44 43 42 41 40
e g 27 [3F 3E 3D 3C 3B 3A 39 38

. . £ 26 |37 36 35 34 33 32 31 30

+ Bit 78H: bit 0 of byte 2FH | et
. & 24 |27 26 25 24 23 22 21 20

23 [1F 1F 1D 1C 1B 1A 19 18

° 22 |17 16 15 14 13 12 11 10

2] |OF OE OD OC OB 0A 05 08

20 (07 06 05 04 03 02 01 00

» Bit 7FH: bit 7 of byte 2FH . Bk 3

17 Bank 2

oF Bank 1

How do we tell if an address is bit address or byte address? (e.g. 08H) e

18
BIT ADDRESS: BIT-ADDRESSABLE RAM

 Bit-addressable RAM

— Bit addresses can only be used by bit addressable instructions

Instruction Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit=0)

CPL bit Complement the bit (bit = NOT bit)

JB bit,target Jump to target if bit = | (jump if bit)

JNB bit,target Jump to target if bit = 0 (jump if no bit)

JBC _ bit,target Jump to target if bit = 1, clear bit (jump if bit, then clear)
MOV bit, C move contents of carry flag to a bit

 If an address is used by the above bit instructions, then it’s a bit address
» Address used by all other instructions are byte address. Bt

address

TF

— E.g. Find out which byte each of the following bit belongs

General-
purpose

SETB 42H R
CLR OFH 22 {17 76 75 74 73 72 713 70
CPL 12 20 Jer ce en 1 eacr er ed
— E.g. save the status of bit P1.7 to bit address 05
17 Bank 2
oF Bank 1

2B SF S5E 5D 5C 5B S5A 59 58
SETB P1.7

24 27 26 25 24 23 22 21 20

07 |Default register bank for RO - R7

Bit-addressable locations

28 |57 56 55 54 53 52 51 50

29 |4F 4F 4D 4C 4B 47 49 48

MOV C Pl 7 23 1F 1E 1D 1C 1B 1A 139 18
b . 22 17 16 15 14 13 12 11 10

1l [OF OE 0D OC OB OA 09 0

MOV 05, C ; MOV 05, P1.7 1s illegal | 20 [07 0 05 04 03 02 03 00

27 3F 3E 3D 3C 3B 3A 39 38
1F Bank 3

BIT ADDRESS: BIT MEMORY MAP

19

* 1/O port and some registers are bit addressable
— I/O port: PO, P1, P2, P3

- E.g. P0.2, P14
Registers: A, B, PSW, IP, IE, ACC, SCON, TCON
« E.g. PSW.3, A4, ACC.0
Each addressable bit has its unique address
» E.g. the bit address of P0.2 is 82H,
* the bit address of PSW.3 is D3H

« Bit address map

O0H — 7FH (128 bits): bit addressable RAM
80H — 87H (8 bits): PO

88H — 8FH (8 bits): TCON

90H — 9FH (8 bits): P1

DOH — D7H (8 bits): PSW

FO — F7H (8 bits): B

Byte
address

FF
FO

EQ
Do
BE
BO
Ag
A
99
ag

S0

aD
ac
aB
aa
as
a8
a7

a3
az
al

a0

Bit address

F7 F& F5 F4 F2 F2 F1

FO

E7 E& E5 E4 EZ E2 El

EO

D7 D& D5 D4 D3 D2 D1

Do

-- BC BE BA BS

E8

BE7 Be B5 B4 B2 EZ2 El

EO

AF -- -- AC AB AR AS

A8

AT A6 AR A4 A3 A2 Al

RO

not bit-addreszable

9F SE 5D 9C 9B %A 99

=)

97 96 95 94 93 92 891

a0

not bit-addressable

not bit-addressable

not bit-addressable

not bit-addressable

not bit-addressable

8F 8E 8D 8C 8B B8R 89

a8

not bit-addressable

not bit-addreszable

not bit-addresszable

not bit-addresszable

87 86 85 84 83 82 81

a0

Special Function Repisters

ACC

PEW

IP

B3

IE

P2

SEUF
SCON

Pl

TH1
THO
TL1
TLO
TMOD
TCON
PCON

DFH
DEL
=05

PO

BIT ADDRESS: DIRECTIVES

20

e BIT directive

— Assign a name to a bit, improve code readability and code efficiency.

— E.g.
SW BIT P2.3
LED BIT PO0.1
MOV C, SW ; the assembler will replace SW with the address of P2.3,
MOV LED, C ; the assembler will replace LED with the address of P0.1

« EQU directive

— EQU directive can also be used to assign name to bit. The assembler will
determine if it’s a bit address or byte address based on context

— E.g.
SW EQU 97H
MYDATA EQU 0AOH
MOV C,SW ; SW is a bit address

MOV MYDATA, #32H ; MYDATA is a byte address

OUTLINE

21

« Extra 128-byte on-chip RAMs

EXTRA RAM

22

Extra 128-byte RAM

— 8051 has 128 bytes on-chip RAM (address: 00H — 7FH)

— 8052 has 256 bytes on-chip RAM

» DS89C4x0 is 8052 compatible = it has 256 bytes RAM

Address map for chips with 256 bytes RAM

— The first 128 bytes: 00H — 7FH

— The extra 128 bytes (“upper memory”): 8OH — FFH

» Problem: the address range 80H — FFH has already been
assigned to SFR (e.g. A, B, PSW, DPTR, PO, P1, P2, P3, etc.)

— Upper memory and SFR use the same address space!

* Physically they are separate

— How do we distinguish between upper memory and SFR?
* To access SFR, we use direct addressing mode or register name
— E.g. MOV 90H, #55H ; equivalent to MOV P1, #55H
» To access upper memory, we use indirect addressing mode

— E.g. MOV RO, 90H
MOV @RO, #55H

. (90H) = 55H

Byte
address

FF
FO

EO

Do

B8 [-- -- --

BO

Ag

Bit address

F7 F6 F5 F4 F3 F2 F1 FO

E7 E6 E5 E4 E2 E2 El1 EO

D7 Dé D5 D4 D2 D2 D1 DO

BC BE BA E2 B8

B7 B6 B5 B4 B3 B2 Bl BO

AF -- -- AC BB AR A9 A8

AO

A7 A6 A5 A4 A3 A2 Al AO

99

not bit-addressable

=1}

9F SE 9D 9C 9B 9A 95 93

20

97 96 95 94 93 92 91 390

an

not bit-addressable

ac

not hit-addressable

aB

not bit-addressable

an

not bit-addressable

a9

not hit-addressable

ag

@F 2E 8D 8C 8B 8A 829 23

a7

not bit-addressable

az

not bit-addressable

az

not bit-addressable

a1

not bit-addressable

a0

87 86 B85 84 83 82 81 80

Special Function Registers

7 [
T

1 Register Bank 0

Scratch Pad RAM

Register Bank 1 (Stack)

23

EXTRA RAM

* Display the contents of upper RAM in Keil

FF Direct Access A Indirect Access

— In the memory panel, use I: (demo) MRS (MOV @FO, A
— C:80H (display ROM contents) 0 hegsterony” (N | PP
— D:20H (display RAM contents)

— 1: 80H (display upper RAM contents) 2

1F Accumulator,
Registers,
Program Status Word,

18 Bank 3 Stack Mointer,

17 Status and Control Bits,
Ports,

10 Bank 2 Timers,

OF Serial Control,
Power Control, and
others

08 Bank 1

o7

0o Bank 0

