ELEG3923 Microprocessor
Ch.10 Serial Port Programming

Dr. Jingxian Wu
wuj@uark.edu

JHY
텍스트 상자

OUTLINE

Basics of Serial Communication

Serial port programming in Assembly

Programming the second serial port

Serial port programming in C

SERIAL COMMUNICATION

e Serial communication v.s. parallel communication
— Computer transfer data in two ways: parallel, serial
— Parallel communication
» 8 or more parallel lines are used to transfer data
— E.g. connecting 8051 to LCD, data bus, connecting to hard drive
» More data can be transferred in unit period of time
» Usually used for short distance data transfer
— Long parallel wires function like antenna, and will leak signal during Tx
— The leaked signals will cause mutual interference for signals in wire (cross-talk)
— Serial communication
o Use 1 data line to transfer data
— Data is transmitted 1 bit a time
» Usually used for data transfer over longer distance

Serial Transfer i Parallel Transfer

DO -
Sender Receiver

SERIAL COMMUNICATION: DUPLEX

o Simplex, Half-duplex, and full-duplex
— Simplex: communication can occur in only one direction (A = B)
« E.g. pager, broadcast radio

— Half-duplex: communication can happen in both directions, but only one at a
time (A = B, or B > A, but not simultaneously)

e E.g. Police radio (walki-talki)
e Only 1 channel (data line) is enough
— Full-duplex: communication can happen in both directions simultaneously
« E.g.telephone
» Two channels (data lines) are required.
e Full-duplex = two simplex

Simplex Transmitter Receiver
Hlf Duplex = o recaer]

Receiver / - \ Transmitter

Full Duplex | Transmitter I I Receiver |
| Receiver I ITransmitterl

SERIAL COMMUNICATION: ASYNCHRONOUS

* Asynchronous serial communication
— Data is transmitted in bursts without following a specific clock
» Data can be transmitted at any time.

« Synchronous transmission: data can only be transmitted at special instants
— When there is no data, channel remains constant to indicate “idle” (no information).

 e.g. some system use “high” voltage to indicate idle

 How does the receiver tell the difference between “idle” and “11111111?

— Framing

~f

Data characters are placed between start and stop bits
Start bit: 1 bit (e.g. low)

Stop bit: 1 bit (e.g. high), or, 2 bits (e.g. high, low)
E.g. 8-bit ASCII + 1 start bit + 1 stop bit = 10 bits/frame

stop

space bt

goes out last

| start

bit

goes out first

SERIAL COMMUNICATION: TRANSFER RATE

e Transfer rate
— Bitrate
* Number of bits that can be transferred in unit time (1 second)
 Unit: bps (bit per second), Kbps (kilo-bit per second), Mbps (mega-bit per
second), Gbps (Giga-bit per second), Thps (Terra-bits per second)
— Terminology conventions
» For storage space (RAM size, ROM size, disk size)
— 1 kilo =2710, 1 mega = 1720, 1 giga = 130
» For data rate
— 1 kilo = 1,000, 1 mega = 1,000,000, 1 giga = 1,000,000,000
— Baud rate
* The number of symbols that can be transferred in unit time (1 second)

« For some systems, 1 symbol = 1 bit, for some other systems, 1 symbol
can be used to represent multiple bits (e.g. 1 symbol = 8 bits)

SERIAL COMMUNICATION: STANDARD

 Communication standard
— A set of rules that must be followed by communication devices

e To ensure that communication devices from different manufactures can
Interoperate with each other

— Example rules:
* Which voltage used to represent ‘0’, which voltage used to represent ‘1’
* How many start bits, how many stop bits
« Which voltage(s) used for start bits, which voltage(s) used for stop bits
* How many bits in one frame (7 bits, 8 bits, 10 bits, ...)
» The format of control signals, how many control pins

— Example standards
» RS232, IEEE 802.11 (WiFi), IEEE 802.16 (WiMax), WCDMA,

e RS232

— The most popular serial communication standard

— Developed by Electronics Industries Association (EIA) in the 1960s’

— Still widely used today

SERIAL COMMUNICATION: RS232

e DTEv.s. DCE
— DTE: data terminal equipment (e.g. PC)

— DCE: data communication equipment (e.g. modem, switch, router, and other
communication device)

— DTE and DCE have different pin definitions

e RS232 connectors o (urmszzzztas 7o
— DB-25 25-pin connector i -
— DB-9 9-pin connector o(;o
— Pin definition for DTE .

» We can either use all 9 pins, or just use . .
in Description

3 pins: TxD, RxD, GND Data carricr detect (DCD)

Received data (RxD)

e TxD: transmit data Transmitted data (TxD)

 RxD: receive data Data terminal ready (DTR)

Signal ground (GND)

* GND: signal ground Data sct ready (DSR)

Request to send (RTS)

e The remaining pins are for more
Clear to send (CTS)

O[O0 [~ |ON [4 [(M |— | =g

sophisticated conrols Ring indicator (RI)

SERIAL COMMUNICATION: RS232

e Different RS232 cables

— DTE €<-> DCE (B) A ———— TaD (3)
!i} ;fr.g — RxD (2)
Computer ; 4) _— TS (4
Telephone {5} ¢y ——————— ATS {5'
Male DB25 Female DEZS Line (20) OTR ————————— DSR (20)
E (6} DSR ————— DTA (6)
8) DCD ——————— DCD (8)
/ e \ Modem @) Rl —0—R (2
ek T |- =l {7} GND ————— GND (T}
DTE DCE Typical DTE-to-0CE cable
Data Data
Terminal Orcuiterminating
Equiprnent Equiprnent

straight-through cable
— DCE <—-> DCE, or DTE <> DTE

(3) RxD e RxD (3}

(2) TxD T=D (2)

Lomputer Computer (4) ATS e RTS (4)
Male DEZS {5] GTE CTE ‘5}

(20} DTR T4 DTR (20)

(&) DSA DSA (6)

In::e;;?:e {é;i DCFIE'.II DCD (8)

= =¥ -) Rl 22
emm =55 =0 @:@ %Eni' (7} GND ﬂNnile
DTE DTE Typical OTE-to-DTE null modem cable

Data Data

Terminal
Equiprn et

Terrninal
Equiprn enit

Null-modem cable

SERIAL COMMUNICATION: RS232

10

o Signal level of RS232

— *1’ is represented by -3 t0 -25 V

— ‘0’ is represented by +3 to +25V

— They are not TTL (transistor-transistor logic) compatible. In TTL

e 1122105V
e ‘0:0t00.8V
— 8051 is TTL compatible:

« 8051 and RS232 devices cannot be directly connected together!

« MAX232

— A voltage converter (line driver) that can convert RS232 signal to TTL

voltage level
— 1 MAX232 chip can be used
to drive 2 RS232 ports

Vece |

. 1 16 5 _‘I’ +
L
C1,|_ 3 MAX232 5 o
. a T c4
ceatd5 = *
T1in Tiout
1 14
Riout Rim

12

T2IN

T2ouT

10

R2out

R2In

9

TTL side

15

o
o}
Do
«
-

RS232 side

8051

TXDO (P3.1)

RXDO (P3.0)

MAX232

11

14

12

OUTLINE

11

e Serial port programming in Assembly

ASSEMBLY: 8051 AND UART

12

DIP
d 8051 (T2yP1o[]1 U 40
(T2ZEX) P1.1[]2 39
— Most 8051 has 1 serial port S
INT3) P1 5[] 6 89C4x0 22
« P3.0 (RXDO), P3.1 (TXDO) ol (020
. RST[] 9 89C440 32
— DS89C4x0 has 2 serial ports g_;gg;;gfg]f 89C450)
INTO) P3.2[] 12 29
e P1.2 (RXD1), P1.3 (TXD1) F o] :
(T P35 15 26
« P3.0 (RXDO0), P3.1 (TXDO0) s g b ii
XTAL2[] 18 23
o UART i b 5

[Vee

[Po.0 (ADO)
[Po1(ADY)
[Po2(AD2)
[P03 (AD3)
[P0.4 (AD4)
[P05 (AD5)
[Po.6 (ADE)
[P07 (AD7)
[EAwvPP
[] ALE/PROG
[PSEN
[P27 (A15)
[P26 (a14)
[P25(a13)
[P24(a12)
[P23 (a1
[P22 (A10)
[P2.1(A9)
[P20(A8)

— Universal asynchronous receiver transmitter

— An integrated circuit commonly used in conjunction with RS232
 [It’s built inside 8051
» The circuit can interpret communication command

— When an ASCII code is sent to UART, it will automatically add start

and stop bits before transmit it through serial port

— When receiving data from serial port, UART will automatically

detect start bit and stop bit, remove the start and stop bits from the

received data, and send the pure data to the CPU

— UART saves us from the details of communication standards.

13
ASSEMBLY: BAUD RATE AND TIMER

e Baud rate in 8051 and timer
— The baud rates supported by 8051 (unit: bps): 9600, 4800, 2400, 1200
— How to set the baud rate?
» Baud rate in 8051 can be set via timer 1 in mode 2 (8-bit auto-reload)
« When used for serial port, the frequency of timer tick is determined by

(XTAL/12)/32
11.0592 MHz |
Machine cycle freq. 28,800 Hz
XTAL 2 =12 . =32 - -
oscillator 921.6 kHz by UART | To Timer 1 to
) set the baud

rate

1 bit is transmitted for each timer period (the time duration from timer
start to timer expires)

Baud Rate TH1 (Decimal) TH1 (Hex)
9600 -3 FD
4800 -6 FA
2400 -12 F4
1200 -24 ES8

Note: XTAL = 11.0592 MHz.

ASSEMBLY: BAUD RATE AND TIMER

o Calculation of baud rate
— With XTAL =11.0592, find the TH1 value needed to have the baud rate 9600
» Clock frequency of timer clock: f = (11.0592 MHz / 12)/32 = 28,800Hz
« Time period of each clock tick: TO = 1/f = 1/28800
 Duration of timer (1 timer cycle): (# of clock ticks in timer)*TO
* 9600 baud -> duration of 1 symbol: 1/9600->1 timer cycle: 1/9600
« 1/9600 = 1/f * (# of clock ticks in timer)
 # of clock ticks in timer = f/9600 = 28800/9600 = 3 = TH1 =-3
« Similarly, for baud 2400
— #of clock ticks = /2400 =12 = TH1 =-12

« Example: set baud rate at 9600
MOV TMOD, #20H
MOV THL1, #-3
SETB TR1

— When connecting two devices through serial port, both devices must have the
same baud

ASSEMBLY: BAUD RATE AND TIMER

15

 Example

— If the value in TH1 is B8, find the baud rate of the serial port (XTAL =
11.0592MHz)

ASSEMBLY: REGISTERS

16

o SBUF register (Serial buffer)

— An 8-bit register used for serial communication
— It holds the data to be transferred or received from serial port.
— E.g.tosend ‘D’ to serial port: MOV SBUF, #’ D’

» The data in SBUF will be automatically processed by UART, then sent to

serial port (e.g. pin TXDO0)

— E.qg. to receive data from serial port: MOV A, SBUF
* Once UART receives data from serial port (e.g. pin RXDO), it will strip

the start and stop bits and then put the data in SBUF
— It serves as a buffer between CPU and serial ports

e SCON register (Serial control register)
— An 8-bit register used to program the start bit, stop bit, and data bits of data

framing, and some other serial related processing

SMO [sMmi | sM2 [REN | T8

RBS8

TIIRI

ASSEMBLY: REGISTERS

e SCON register
SMO [sMi | sM2 T REN [TB8 T RB8 | T [RI

— SMO, SM1 (serial port mode)
» Specify framing format, how to calculate baud

* (SMO, SM1) = (0,1), mode 1: 8-bit data, 1 start bit, 1 stop bit, variable
baud set by timer. Most commonly used

» The other three modes are rarely used (not required for this course)
— (SM0,SM1) = (0,0), mode 0: fixed baud = XTAL/12
— (SMO0, SM1) = (1,0), mode 2: 9-bit data, fixed baud
— (SMQ0, SM1) =(1, 1), mode 3: 9-bit data, variable baud

— SM2
o SM2 = 0: single processor
o SM2 = 1: multiprocessor communication (not required for this course)

ASSEMBLY: REGISTERS

e SCON register
SMO [sMi | sM2 T REN [TB8 T RB8 | T [RI

— REN (Receive Enable)
» Enable/disable reception
 REN = 1: the 8051 will accept incoming data from serial port
* REN = 0: the receiver is disabled
e E.g. SETB REN, CLR REN, SETB SCON.4, CLR SCON.4
— TB8
« Used by modes 2 and 3 for the transmission bit 8 (the 9™ data bit)
 CLR TB8 when using mode 1
- RBS8
« Used by modes 2 and 3 for the reception of bit 8 (the 9" data bit)
» Used by mode 1 to store the stop bit

ASSEMBLY: REGISTERS

e SCON register
SMO [sMi | sM2 T REN [TB8 T RB8 | T [RI

— TI (transmit interrupt)

* When 8051 finishes the transfer of the 8-bit character, it set Tl to ‘1’ to
Indicate that it is ready to transfer the next character

o The Tl is raised at the beginning of the stop bit
— RI (receive interrupt)
* When 8051 receives a character
— 1. The UART removes start bit and stop bit
— 2. The UART puts the 8-bit character in SBUF

— 3. Rl isset to ‘1’ to indicate that a new byte is ready to be picked up
in SBUF

» RI is raised halfway through the stop bit

20

ASSEMBLY: TRANSMISSION PROGRAM

 Example

— Write a program to transfer letter “A” serially at 4800 baud, continuously

AGAIN:
HERE:

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV TH1, #-6 ; 4800 baud
MOV SCON, #50H ; 0101 0000 (mode 1, single

; processor,REN=1)
SETB TR1 ; start timer
MOV SBUF, #A’ ; store ‘A’ in SBUF
JNB Tl, HERE ; wait for T1 = 1 (transmission over)
CLRTI ; clear T1 for next transmission
SIMP AGAIN ; repeat

— The data in SBUF is transmitted serially, one bit at a time

 If we write a new character to SBUF before Tl is raised (the transmission of
the previous character is not over yet), part of the original data will be lost

SMO | sMi [sM2 [REN | ™B8 [RB8 | T [R

21

ASSEMBLY: TRANSMISSION PROGRAM

 Example

— Write a program to transfer letter “YES” serially at 9600 baud, 8-bit data, 1 stop
bit, continuously

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)

AGAIN:

TRANSFER:

HERE:

MOV TH1

 #-3 - 9600 baud

MOV SCON, #50H ; 0101 0000 (mode 1, single processor, REN=1)

SETB TR1

: start timer

MOV A, #Y’ ; store ‘A’ in SBUF

ACALL TRANSFER
MOV A, #F’
ACALL TRANSFER
MOV A, #S’
ACALL TRANSFER
SIMP AGAIN

CLRTI

SIMP AGAIN

MOV SBUF, A

JNB TI, HERE

CLRTI
RET

SMO | SM1

SM2 [REN [™88 | RB8 | TI [RI

ASSEMBLY: RECEPTION PROGRAM

22

 Example

— Program the 8051 to receive bytes of data serially, and put them in P1. Set the
baud rate at 4800, 8-bit data, 1 stop bit

MOV TMOD, #20H

MOV TH1, #-6 ; 4800 baud
MOV SCON, #50H , mode 1
SETB TR1
HERE: JNB RI, HERE ; wait for char to come in (RI=1)
MOV A, SBUF ; save incoming byte in A
MOV P1, A ; send to port 1
CLRRI ; Clear, get ready for next byte
SIMP HERE

— RI =1 indicates a new byte is copied in SBUF
— We need to copy the data in SBUF to another place immediately after RI = 1
» Otherwise the contents in SBUF will be overwritten by the next character

23

ASSEMBLY: TRANSMISSION AND RECEPTION

 Example

— Write a program to (1) send to PC “We are ready”; (2) receive data from PC
and send it to P1; (3) read data from P2 and send it to PC. (2) and (3) should
be performed continuously.

- ORG
MOV
MOV
MOV
MOV

- SETB

o MOV

H 1: =~ CLR

| MOVC

JZ

ACALL

INC

. .saMp

B 1l: .. MOV
IR T ACALL
ACALL
MOV

SJMP

o -
P2, #0FFH
TMOD, #20H
TH1, #0FAH
SCON, #50H
TR1

" DPTR, #MYDATA

A
A,@A+DPTR
B 1

SEND

DPTR

H 1
A, P2
SEND
RECV
P1,A
B 1

;make P2 an input port
;Timer 1, mode 2 {auto-reload)
;4800 baud rate

;8-bit,1 stop, REN enabled
;etart Timer 1

;load pointer for message

;get the character

;1f last character get out
;otherwise call transfer
;next one | :
;stay in loop

;jread data on P2

 ;transfer it serially

;get the serial data
;display it on LEDs
;stay in loop indefinitly

24
ASSEMBLY: TRANSMISSION AND RECEPTION

 Example (Cont’d)

j=-=-----------gserial data transfer. ACC has the data
SEND: =~ MOV SBUF,A ;load the data |
H.2: . JNB TI,H 2 ,stay here untll_last,bit gone
S .. CLR TI - jget ready for next char .
- o RET jreturn to caller
JmEEEesrmasl-~---receive data serlally in ACC
RECV: JNB RI,RECV ;wait here for char
- Ts - MOV A,SBUF ;save it in ACC
- . CLR RI S rget ready for next char

-~ RET | ireturn to caller |

fermesaesa ---+----The message

MYDATA: DB "We Are Ready",0

ASSEMBLY: DOUBLE BAUD RATE

25

* The baud rate can be doubled by using the PCON register

— PCON: (Power control)

SMOD

GFl1

GFO

PD

IDL

— SMOD = 1: double the baud generated by crystal and/or timer
— SMOD = 0: the baud is determined by crystal and/or timer

— NOT bit addressable!
— How to set SMOD?

» Use register A as an intermediate register

MOV A, PCON

SETB ACC.7 ; A.7 1s invalid!

MOV PCON, A

TH1 (Decimal) (Hex) SMOD=0 SMOD=1

-3 D 9,600 19,200
-6 FA 4,800 9,600
-12 K4 2,400 4,800
24 E8 1,200 2,400

Note: XTAL = 11.0592 MHz.

ASSEMBLY: EXAMPLES

26

 Example
— Find the baud rate if TH1 =-2, SMOD =1, XTAL =11.0592 MHz

— Write a program to use serial port with baud 19200. (1) read a byte from serial
port. (2) if the byte is “A’, write ‘1’ back to serial port (3) if the byte is not
‘A’, write ‘O’ back to serial port

OUTLINE

27

* Programming the second serial port

SECOND PORT

28

» Second serial port

— So far, all of our discussions are about the first serial port (serial port 0)

e TXDP3.1, RXD P3.0
 SFR addresses:

— SCON =98H, SBUF = 99H

— TL1=8BH, TH1 =8DH, TCON = 88H, PCON = 87H —°

DS89C4x0

TxDO (P3.1)

MAX232

O

RxDO (P3.0)

)

TxD1 (P1.3
RxD1 (P1.2)

w N w no
Serial #1 Serial #0

— Some 8051/8052 chips have a 2"9 serial port (serial port 1)

e TXDP1.3,RXDP1.2

e SCON (98H) and SBUF (99H) can only be used for serial port O
e« TL1, TH1, TCON, PCON can be used for both serial ports
» We need two new registers SCON and SBUF for serial port 1. In DS89C4x0, for

serial port

— SCON1 = COH, SBUF1 =C1H
— TL1=8BH, TH1 =8DH, TCON = 88H, PCON = 87H

SFR First Serial Port Second Serial Port
SCON (byte address) SCONO = 98H SCON1 = COH
SBUF (byte address) SBUFO = 99H SBUF1 =C1H

TL (byte address) TL1 = 8BH TL1 = 8BH

TH (byte address) TH1 = 8DH TH1 = 8DH

TCON (byte address) TCONO = 88H TCONO = 88H
PCON (byte address) PCON = 87H PCON = 87H

SECOND PORT: EXAMPLE

29

Example

— Write a program for the second serial port to continuously transfer “A” at

4800 baud

AGAIN:

SENDCOM2:

HERE:

SBUF1 EQU 0C1H
SCON1 EQU 0COH
TI1 BIT 0C1H
RI1 BIT 0COH

MOV TMOD, #20H
MOV TH1, #-6

MOV SCON1, #50H
SETB TR1

MOV A, #A’
ACALL SENDCOM?2
SIMP AGAIN

MOV SBUF1, A
JNB TI1, HERE
CLRTI1

RET

:use timer 1

: address for 24 SBUF
: address for 2" SCON
: bit address of 2 T11
. bit address of 2" RI1

; 4800

; SBUF1
; TI1

SECOND PORT: EXAMPLE

30

 Example

— A switch is connected to P2.0. (1) if SW=0, send “Hello” to serial port 0. (2)
If SW =1, send “Goodbye” to serial port 1. 9600 baud. Requirements

» A. write subroutines: SENDCOMO, SENDCOM1
« B. Store “Hello” and “Goodbye” in ROM. Both strings are terminated by

0
e C. Use directives.
SBUF1 EQU 0C1H : address for 24 SBUF
SCON1 EQU 0COH : address for 2" SCON
TI1LBIT OC1H ; bit address of 2" T11

RI1 BIT OCOH - bit address of 2"d R11

OUTLINE

31

o Serial port programming in C

C PROGRAMMING

32

Example

— Write an 8051 C program to receive a byte of data from serial port 0, then
send it back to serial port 0. Do this continuously.
#include <reg51.h>
void SerTx(unsigned char);
void SerRx(unsigned char *);
void main(void)
{
char byteBuf;
TMOD = 0x20; /[timer 1, 8-bit auto-reload
TH1 = OXFD; /I or: TH1 = -3, 9600 baud
SCON = 0x50;
TR1=1; /[start timer
while(1)
{
SerRx(&byteBuf); // read byte from serial port
SerTx(byteBuf); I/ send byte back to serial port

C PROGRAMMING

33

Example
— (Cont’d)

void SerTx(unsigned char x)

{ SBUF = x; I/ put the char in SBUF register
while(TI = =0); /[wait until transmitted
TI=0;
¥
void SerRx(unsigned char * pX)
{
while(RI = =0); // wait until received
RI =0;

*pX = SBUF; // copy the data in SBUF to (pX)

C PRGRAMMING

34

Example

— Write a C program to transmit a letter ‘A’ serially at 4800 baud continuously.

Use the 2" serial port with 8-bit data and 1 stop bit.

#include <reg51.h>
sfr SBUF1 = 0xC1;
sfr SCON1 = 0xCO;
shit TI1 = 0xC1;
void main(void)
{
TMOD = 0x20;
TH1 = OXFA;
SCON1 = 0x50;
TR1=1;
while (1)
{
SBUF1 =“‘A’;
while(TI1 == 0);
TI1=0;

/[timer 1, mode 2

/[timer 1

// SCONL1 for 2" serial port
/[start timer 1

// SBUF1 for 2" serial port
/I TI1 for 2" serial port

