
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.10 Serial Port Programming

Dr Jingxian WuDr. Jingxian Wu
wuj@uark.edu

JHY
텍스트 상자

2

OUTLINE

• Basics of Serial Communication

• Serial port programming in Assembly

• Programming the second serial port• Programming the second serial port

• Serial port programming in C

SERIAL COMMUNICATION
3

• Serial communication v.s. parallel communication
– Computer transfer data in two ways: parallel, serial
– Parallel communication

• 8 or more parallel lines are used to transfer data• 8 or more parallel lines are used to transfer data
– E.g. connecting 8051 to LCD, data bus, connecting to hard drive

• More data can be transferred in unit period of time
• Usually used for short distance data transfer y

– Long parallel wires function like antenna, and will leak signal during Tx
– The leaked signals will cause mutual interference for signals in wire (cross-talk)

– Serial communication
• Use 1 data line to transfer data

– Data is transmitted 1 bit a time
• Usually used for data transfer over longer distance

SERIAL COMMUNICATION: DUPLEX
4

• Simplex, Half-duplex, and full-duplex
– Simplex: communication can occur in only one direction (A B)

• E.g. pager, broadcast radio
– Half-duplex: communication can happen in both directions, but only one at a

time (A B, or B A, but not simultaneously)
• E.g. Police radio (walki-talki)

l h l (d li) i h• Only 1 channel (data line) is enough
– Full-duplex: communication can happen in both directions simultaneously

• E.g. telephone
• Two channels (data lines) are required.
• Full-duplex = two simplex

SERIAL COMMUNICATION: ASYNCHRONOUS
A h i l i ti

5

• Asynchronous serial communication
– Data is transmitted in bursts without following a specific clock

• Data can be transmitted at any time.
• Synchronous transmission: data can only be transmitted at special instants

– When there is no data, channel remains constant to indicate “idle” (no information).
• e.g. some system use “high” voltage to indicate idle
• How does the receiver tell the difference between “idle” and “11111111”?

– Framing
• Data characters are placed between start and stop bits
• Start bit: 1 bit (e.g. low)
• Stop bit: 1 bit (e.g. high), or, 2 bits (e.g. high, low)
• E.g. 8-bit ASCII + 1 start bit + 1 stop bit = 10 bits/frame

SERIAL COMMUNICATION: TRANSFER RATE
6

• Transfer rate
– Bit rate

• Number of bits that can be transferred in unit time (1 second)
• Unit: bps (bit per second), Kbps (kilo-bit per second), Mbps (mega-bit per

second), Gbps (Giga-bit per second), Tbps (Terra-bits per second)
– Terminology conventions

(i i di k i)• For storage space (RAM size, ROM size, disk size)
– 1 kilo = 2^10, 1 mega = 1^20, 1 giga = 1^30

• For data rate
– 1 kilo = 1,000, 1 mega = 1,000,000, 1 giga = 1,000,000,000

– Baud rate
• The number of symbols that can be transferred in unit time (1 second)
• For some systems, 1 symbol = 1 bit, for some other systems, 1 symbol

can be used to represent multiple bits (e.g. 1 symbol = 8 bits)

SERIAL COMMUNICATION: STANDARD
7

• Communication standard
– A set of rules that must be followed by communication devices

• To ensure that communication devices from different manufactures can
i i h h hinteroperate with each other

– Example rules:
• Which voltage used to represent ‘0’, which voltage used to represent ‘1’

bi h bi• How many start bits, how many stop bits
• Which voltage(s) used for start bits, which voltage(s) used for stop bits
• How many bits in one frame (7 bits, 8 bits, 10 bits, …)
• The format of control signals, how many control pins

– Example standards
• RS232, IEEE 802.11 (WiFi), IEEE 802.16 (WiMax), WCDMA, ……

• RS232
– The most popular serial communication standard
– Developed by Electronics Industries Association (EIA) in the 1960s’
– Still widely used today

SERIAL COMMUNICATION: RS232
8

• DTE v.s. DCE
– DTE: data terminal equipment (e.g. PC)
– DCE: data communication equipment (e.g. modem, switch, router, and other

i i d i)communication device)
– DTE and DCE have different pin definitions

• RS232 connectors
– DB-25 25-pin connector
– DB-9 9-pin connector
– Pin definition for DTE

• We can either use all 9 pins, or just use
3 pins: TxD, RxD, GND

• TxD: transmit data
• RxD: receive data
• GND: signal ground
• The remaining pins are for more

sophisticated conrols

SERIAL COMMUNICATION: RS232
9

• Different RS232 cables
– DTE DCE

straight-through cable
– DCE DCE, or DTE DTE

N ll d blNull-modem cable

SERIAL COMMUNICATION: RS232
10

• Signal level of RS232
– ‘1’ is represented by -3 to -25 V
– ‘0’ is represented by +3 to +25 V
– They are not TTL (transistor-transistor logic) compatible. In TTL

• ‘1’: 2.2 to 5 V
• ‘0’: 0 to 0.8 V

– 8051 is TTL compatible:
• 8051 and RS232 devices cannot be directly connected together!

• MAX232
– A voltage converter (line driver) that can convert RS232 signal to TTL

voltage level
– 1 MAX232 chip can be used

to drive 2 RS232 ports

11

OUTLINE

• Basics of Serial Communication

• Serial port programming in Assembly

• Programming the second serial port• Programming the second serial port

• Serial port programming in C

ASSEMBLY: 8051 AND UART
12

• 8051
– Most 8051 has 1 serial port

• P3.0 (RXD0), P3.1 (TXD0)
– DS89C4x0 has 2 serial ports

• P1.2 (RXD1), P1.3 (TXD1)
• P3.0 (RXD0), P3.1 (TXD0)

• UART
– Universal asynchronous receiver transmitter
– An integrated circuit commonly used in conjunction with RS232

• It’s built inside 8051
• The circuit can interpret communication command

– When an ASCII code is sent to UART, it will automatically add start
and stop bits before transmit it through serial port

– When receiving data from serial port, UART will automatically
detect start bit and stop bit, remove the start and stop bits from the

i d d t d d th d t t th CPUreceived data, and send the pure data to the CPU
– UART saves us from the details of communication standards.

ASSEMBLY: BAUD RATE AND TIMER
13

• Baud rate in 8051 and timer
– The baud rates supported by 8051 (unit: bps): 9600, 4800, 2400, 1200
– How to set the baud rate?

• Baud rate in 8051 can be set via timer 1 in mode 2 (8-bit auto-reload)
• When used for serial port, the frequency of timer tick is determined by

(XTAL/12)/32

• 1 bit is transmitted for each timer period (the time duration from timer
start to timer expires)

ASSEMBLY: BAUD RATE AND TIMER
14

• Calculation of baud rate
– With XTAL = 11.0592, find the TH1 value needed to have the baud rate 9600

• Clock frequency of timer clock: f = (11.0592 MHz / 12)/32 = 28,800Hz
• Time period of each clock tick: T0 = 1/f = 1/28800
• Duration of timer (1 timer cycle): (# of clock ticks in timer)*T0
• 9600 baud duration of 1 symbol: 1/9600 1 timer cycle: 1/9600
• 1/9600 = 1/f * (# of clock ticks in timer)
• # of clock ticks in timer = f/9600 = 28800/9600 = 3 TH1 =-3
• Similarly, for baud 2400

– # of clock ticks = f/2400 = 12 TH1 = -12
• Example: set baud rate at 9600

MOV TMOD, #20H
MOV TH1 # 3MOV TH1, #-3
SETB TR1
……

– When connecting two devices through serial port, both devices must have the
same baud

ASSEMBLY: BAUD RATE AND TIMER
15

• Example
– If the value in TH1 is B8, find the baud rate of the serial port (XTAL =

11.0592MHz)

ASSEMBLY: REGISTERS
16

• SBUF register (Serial buffer)
– An 8-bit register used for serial communication
– It holds the data to be transferred or received from serial port.
– E.g. to send ‘D’ to serial port: MOV SBUF, #’D’

• The data in SBUF will be automatically processed by UART, then sent to
serial port (e.g. pin TXD0)

i d f i l– E.g. to receive data from serial port: MOV A, SBUF
• Once UART receives data from serial port (e.g. pin RXD0), it will strip

the start and stop bits and then put the data in SBUF
It b ff b t CPU d i l t– It serves as a buffer between CPU and serial ports

• SCON register (Serial control register)
– An 8-bit register used to program the start bit, stop bit, and data bits of data

framing and some other serial related processingframing, and some other serial related processing

ASSEMBLY: REGISTERS
SCON i t

17

• SCON register

– SM0, SM1 (serial port mode)(p)
• Specify framing format, how to calculate baud
• (SM0, SM1) = (0,1), mode 1: 8-bit data, 1 start bit, 1 stop bit, variable

baud set by timer. Most commonly used
Th th th d l d (t i d f thi)• The other three modes are rarely used (not required for this course)

– (SM0,SM1) = (0,0), mode 0: fixed baud = XTAL/12
– (SM0, SM1) = (1,0), mode 2: 9-bit data, fixed baud
– (SM0 SM1) = (1 1) mode 3: 9-bit data variable baud– (SM0, SM1) = (1, 1), mode 3: 9-bit data, variable baud

– SM2
• SM2 = 0: single processorg p
• SM2 = 1: multiprocessor communication (not required for this course)

ASSEMBLY: REGISTERS
SCON i t

18

• SCON register

– REN (Receive Enable)()
• Enable/disable reception
• REN = 1: the 8051 will accept incoming data from serial port
• REN = 0: the receiver is disabled
• E.g. SETB REN, CLR REN, SETB SCON.4, CLR SCON.4

– TB8
• Used by modes 2 and 3 for the transmission bit 8 (the 9th data bit)

CLR TB8 h i d 1• CLR TB8 when using mode 1
– RB8

• Used by modes 2 and 3 for the reception of bit 8 (the 9th data bit)
• Used by mode 1 to store the stop bitUsed by mode 1 to store the stop bit

ASSEMBLY: REGISTERS
SCON i t

19

• SCON register

– TI (transmit interrupt)(p)
• When 8051 finishes the transfer of the 8-bit character, it set TI to ‘1’ to

indicate that it is ready to transfer the next character
• The TI is raised at the beginning of the stop bit

RI (i i t t)– RI (receive interrupt)
• When 8051 receives a character

– 1. The UART removes start bit and stop bit
– 2 The UART puts the 8-bit character in SBUF– 2. The UART puts the 8-bit character in SBUF
– 3. RI is set to ‘1’ to indicate that a new byte is ready to be picked up

in SBUF
• RI is raised halfway through the stop bit

ASSEMBLY: TRANSMISSION PROGRAM
20

• Example
– Write a program to transfer letter “A” serially at 4800 baud, continuously

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV TH1, #-6 ; 4800 baud
MOV SCON, #50H ; 0101 0000 (mode 1, single

; processor,REN=1)
iSETB TR1 ; start timer

AGAIN: MOV SBUF, #’A’ ; store ‘A’ in SBUF
HERE: JNB TI, HERE ; wait for TI = 1 (transmission over)

CLR TI ; clear TI for next transmission
SJMP AGAIN ; repeat

– The data in SBUF is transmitted serially, one bit at a time
• If we write a new character to SBUF before TI is raised (the transmission of

the previous character is not over yet), part of the original data will be lost

ASSEMBLY: TRANSMISSION PROGRAM
E l

21

• Example
– Write a program to transfer letter “YES” serially at 9600 baud, 8-bit data, 1 stop

bit, continuously
MOV TMOD #20H ; timer 1 mode 2 (8-bit auto-reload)MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV TH1, #-3 ; 9600 baud
MOV SCON, #50H ; 0101 0000 (mode 1, single processor, REN=1)
SETB TR1 ; start timer

AGAIN: MOV A, #’Y’ ; store ‘A’ in SBUFAGAIN: MOV A, # Y ; store A in SBUF
ACALL TRANSFER
MOV A, #’E’
ACALL TRANSFER
MOV A, #’S’
ACALL TRANSFER
SJMP AGAIN
CLR TI ;
SJMP AGAIN ;

;---
TRANSFER: MOV SBUF, A
HERE: JNB TI, HERE

CLR TI
RET

ASSEMBLY: RECEPTION PROGRAM
22

• Example
– Program the 8051 to receive bytes of data serially, and put them in P1. Set the

baud rate at 4800, 8-bit data, 1 stop bit
MOV TMOD #20HMOV TMOD, #20H
MOV TH1, #-6 ; 4800 baud
MOV SCON, #50H ; mode 1
SETB TR1

HERE: JNB RI, HERE ; wait for char to come in (RI=1)
MOV A, SBUF ; save incoming byte in A
MOV P1, A ; send to port 1
CLR RI ; clear, get ready for next byte
SJMP HERE

– RI = 1 indicates a new byte is copied in SBUF
– We need to copy the data in SBUF to another place immediately after RI = 1

• Otherwise the contents in SBUF will be overwritten by the next character

ASSEMBLY: TRANSMISSION AND RECEPTION
23

• Example
– Write a program to (1) send to PC “We are ready”; (2) receive data from PC

and send it to P1; (3) read data from P2 and send it to PC. (2) and (3) should
be performed continuouslybe performed continuously.

ASSEMBLY: TRANSMISSION AND RECEPTION
24

• Example (Cont’d)

ASSEMBLY: DOUBLE BAUD RATE
Th b d t b d bl d b i th PCON i t

25

• The baud rate can be doubled by using the PCON register
– PCON: (Power control)

– SMOD = 1: double the baud generated by crystal and/or timer
– SMOD = 0: the baud is determined by crystal and/or timer
– NOT bit addressable!
– How to set SMOD?

• Use register A as an intermediate register

MOV A, PCON
SETB ACC.7 ; A.7 is invalid!
MOV PCON, A

ASSEMBLY: EXAMPLES
26

• Example
– Find the baud rate if TH1 = -2, SMOD = 1, XTAL = 11.0592 MHz

– Write a program to use serial port with baud 19200. (1) read a byte from serial
() if h b i i b k i l () if h b iport. (2) if the byte is ‘A’, write ‘1’ back to serial port (3) if the byte is not

‘A’, write ‘0’ back to serial port

27

OUTLINE

• Basics of Serial Communication

• Serial port programming in Assembly

• Programming the second serial port• Programming the second serial port

• Serial port programming in C

SECOND PORT
28

• Second serial port
– So far, all of our discussions are about the first serial port (serial port 0)

• TXD P3.1, RXD P3.0
SFR dd• SFR addresses:

– SCON = 98H, SBUF = 99H
– TL1 = 8BH, TH1 = 8DH, TCON = 88H, PCON = 87H

– Some 8051/8052 chips have a 2nd serial port (serial port 1)So e 805 /805 c ps ve se po (se po)
• TXD P1.3, RXD P1.2
• SCON (98H) and SBUF (99H) can only be used for serial port 0
• TL1, TH1, TCON, PCON can be used for both serial ports
• We need two new registers SCON and SBUF for serial port 1. In DS89C4x0, for

serial port
– SCON1 = C0H, SBUF1 = C1H
– TL1 = 8BH TH1 = 8DH TCON = 88H PCON = 87HTL1 8BH, TH1 8DH, TCON 88H, PCON 87H

SECOND PORT: EXAMPLE
E l

29

• Example
– Write a program for the second serial port to continuously transfer “A” at

4800 baud
SBUF1 EQU 0C1H ; address for 2nd SBUFSBUF1 EQU 0C1H ; address for 2 SBUF
SCON1 EQU 0C0H ; address for 2nd SCON
TI1 BIT 0C1H ; bit address of 2nd TI1
RI1 BIT 0C0H ; bit address of 2nd RI1

MOV TMOD, #20H ; use timer 1
MOV TH1, #-6 ; 4800
MOV SCON1, #50H
SETB TR1

AGAIN: MOV A, #’A’
ACALL SENDCOM2
SJMP AGAIN

;----------------------
SENDCOM2:

MOV SBUF1, A ; SBUF1
HERE: JNB TI1, HERE ; TI1

CLR TI1
RET

SECOND PORT: EXAMPLE
30

• Example
– A switch is connected to P2.0. (1) if SW=0, send “Hello” to serial port 0. (2)

if SW = 1, send “Goodbye” to serial port 1. 9600 baud. Requirements
A i b i SENDCOM0 SENDCOM1• A. write subroutines: SENDCOM0, SENDCOM1

• B. Store “Hello” and “Goodbye” in ROM. Both strings are terminated by
0

• C Use directives• C. Use directives.
SBUF1 EQU 0C1H ; address for 2nd SBUF
SCON1 EQU 0C0H ; address for 2nd SCON
TI1 BIT 0C1H ; bit address of 2nd TI1;
RI1 BIT 0C0H ; bit address of 2nd RI1

31

OUTLINE

• Basics of Serial Communication

• Serial port programming in Assembly

• Programming the second serial port• Programming the second serial port

• Serial port programming in C

C PROGRAMMING
E l

32

• Example
– Write an 8051 C program to receive a byte of data from serial port 0, then

send it back to serial port 0. Do this continuously.
#include <reg51 h>#include <reg51.h>
void SerTx(unsigned char);
void SerRx(unsigned char *);
void main(void)
{{

char byteBuf;
TMOD = 0x20; // timer 1, 8-bit auto-reload
TH1 = 0XFD; // or: TH1 = -3, 9600 baud
SCON = 0x50;
TR1 = 1; // start timer
while(1)
{{

SerRx(&byteBuf); // read byte from serial port
SerTx(byteBuf); // send byte back to serial port

}
}

C PROGRAMMING
33

• Example
– (Cont’d)

void SerTx(unsigned char x)
{

SBUF = x; // put the char in SBUF register
while(TI = =0); // wait until transmitted
TI = 0;

}

void SerRx(unsigned char * pX)(g p)
{

while(RI = =0); // wait until received
RI = 0;
*pX = SBUF; // copy the data in SBUF to (pX)pX SBUF; // copy the data in SBUF to (pX)

}

C PRGRAMMING
E l

34

• Example
– Write a C program to transmit a letter ‘A’ serially at 4800 baud continuously.

Use the 2nd serial port with 8-bit data and 1 stop bit.
#include <reg51 h>#include <reg51.h>
sfr SBUF1 = 0xC1;
sfr SCON1 = 0xC0;
sbit TI1 = 0xC1;

id i (id)void main(void)
{

TMOD = 0x20; // timer 1, mode 2
TH1 = 0XFA; // timer 1
SCON1 = 0x50; // SCON1 for 2nd serial port
TR1 = 1; // start timer 1
while (1)
{{

SBUF1 = ‘A’; // SBUF1 for 2nd serial port
while(TI1 == 0); // TI1 for 2nd serial port
TI1 = 0;

}
}

