Department of Electrical Engineering
University of Arkansas UNVERSITYARKANSAS

ELEG3923 Microprocessor
Ch.6 Arithmetic and Logics

Dr. Jingxian Wu
wuj@uark.edu

OUTLINE

Arithmetic instructions

e Signed number operations

e Logic and compare instructions

e Rotate instruction and data serialization

« BCD, ASCII

AROTHMETIC: ADDC

« ADDC (add with carry)
— ADDC A, source
— (A) =(A) +source + CY
— Destination must be register A!

— Example: write a program to find the sum of 3CE7H and 3B8DH. Save the
lower byte in R6, the higher byte in R7.

CLRC

MOV A, #0E7H

ADD A, #8DH ; the sum of lower byte
MOV R6, A ; lower byte in R6
MOV A, #3CH

ADDC A, #3BH ; the sum of higher byte,

; consider the carry from lower byte
MOV R7, A

ARITHMETIC: BCD

Binary coded decimal (BCD)

— Use 4-bit binary codes to represent decimal numbers. Totally 10 codes
corresponding to decimal number 0 — 9. Digit

0
— Difference from binary number or hex number:
« BCD contains only 10 codes
* Any binary number larger than 9 (e.g. 1010) is not a BCD code.
Unpacked BCD
— Use a single byte (8 bits) to represent 1 BCD code (4 bits)
— The high 4 bits are zeros, and low 4 bits are BCD. E.g. (00001000)
— Convenient to store BCD in 8-bit registers.

O @ ~J 0 Ul b W

BCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

— E.g. unpacked BCD representation of decimal number 17: 0000 0001, 0000 0111

Packed BCD
— Assingle byte (8 bits) is used to represent 2 BCD codes.
— E.g. packed BCD representation of decimal number 17: 0001 0111
— A binary sequence can be used to represent either BCD or HEX.
» E.g. 0001 0111 (BCD: 17 decimal) (HEX: 17H)
» The programmer must know which code (BCD or HEX) is actually used.

ARITHMETIC: BCD ADDTION

e Addition of BCD numbers
— Advantage of packed BCD: easy to use and read
« E.g. Packed BCD of 39 decimal is 0011 1001
— Disadvantage: the ADD instruction cannot be used for BCD numbers
e E.g. 1. find 17+28 by using BCD
MOV A, #17H
ADD A, #28H
— The result is 3F, the high 4-bit is BCD, the low 4-bit is not BCD.

— To make it a BCD, add 6 to the low 4-bit: 3FH + 06H = 45H, which
Is the packed BCD for 45 decimal.

« E.g. 2. find 52+87 by using BCD
MOV A, #52H
ADD A, #87H
— The result is D9, the high 4-bit is BCD, the low 4-bit is not BCD
— To make it a BCD, add 6 to the high 4 bit: D9H+60H = 139H
— After summation, if 4-bit is not BCD, add 6 to it to adjust it to BCD.
» This can be done automatically!

ARITHMETIC: DA

DA (decimal adjust for addition)
— Convert the sum of 2 BCD numbers to a BCD number

— E.g. (demo)
MOV A, #47H
ADD A, #25H ; (A) = 6CH
DA A ; adjust for BCD addition, (A) = 72H

— Operation of DA
 If lower nibble is not BCD, or if AC =1, add 0110 to lower nibble
* If higher nibble is not BCD, or if CY =1, add 0110 to lower nibble
— Notes:
» Can only be used for register A

ARITHMETIC: UNSIGNED NUMBER SUBTRACTION

e SUBB (subtraction with borrow)
— SUBB A, source ; (A) = (A) —source — CY
— Example: find 3FH - 23H
CLRC ; (CY)=0
MOV A, #3FH
SUBB A, #23H

— For two unsigned numbers A and B, A-B = A + (2’s complement of B)
— Operations of SUBB

» 1. Find the 2’s complement of source

o 2. find the summation of A and 2’s complement of source
3. Invert the carry

ARITHMETIC: UNSIGNED NUMBER SUBTRACTION

« SUBB (Cont’d)
— Example: find 4CH - 6EH

CLRC
MOV A, #4CH
SUBB A, #6EH

— If CY =0 after SUBB, the result is positive;

— If CY =1 after SUBB, the result is negative, and reg. A contains the absolute
value of the result in the form of 2’s complement

— Find the decimal value of the result in the above example
» Perform 2’s complement over a number twice yields the original number

— Get 2’s complement by using instructions

MOV A, #6EH
CPL A ; 1’s complement
INC A

ARITHEMETIC: UNSIGNED NUMBER SUBTRACTION

* Multiple bytes subtraction (demo)

— Example: find 2762H — 1296H, store the lower byte in R7, higher byte in R6
CLRC
MOV A, #62H
SUBB A, #6H ; 62H-96H =CCH withCY =1

; CY = 2 indicate there is a borrow

MOV R7, A
MOV A, #27H
SUBB A, #12H
MOV R6, A

— Note:
» In SUBB, the destination must be register A

AIRTHEMETIC: UNSIGNED MULTIPLICATION AND DIVISION

10

Multiplication
— MUL AB ; A * B, put the higher byte in B and lower byte in A
— Example
MOV A, #25H
MOV B, #65H
MUL AB ; 25H * 65H = E99
; B=0EH, A=99H
Division
— DIV AB ; A/B, put quotient in A, and remainder in B
— Example
MOV A, #95
MOV B, #10
DIV AB ;A=09,B=05

— If the denominator (B) is 0, OV =1 to indicate there is an error.

AIRTHEMETIC: UNSIGNED MULTIPLICATION AND DIVISION

11

 Example
— Converting a HEX number to decimal

* Review: HEX to decimal conversion: keep divide hex by 10 and keep the

remainder

MOV A, #0FDH
MOV B, #10
DIV AB

MOV R7, B
MOV B, #10
DIV AB

MOV R6, B

MOV R5, A

- 253 decimal

; 253/10, (A) =25,(B) =3
; save lower digit

; 25/10, (A)=2,(B) =5

; save the next digit

; quotient (2) is less than 10
; save the last digit

OUTLINE

12

e Signed number operations

SIGNED NUMBER

13

Signed 8-bit number

D7|D6|D5|D4|D3}D2|DI1}DO0

sign

MSB represent sign: ‘1’ negative, ‘0’ positive —

magnitude

1

If positive, range is 0 to 127 (00000000 ~01111111)
If negative, use 2’s complement to find absolute value
« Example: a signed number is represented as 1111 1011, find its decimal value

If a number is negative: it’s signed number representation = 2’s complement of its absolute
value

« Example: find the signed number representation of -1 and -128

The range of 8-bit signed number is -128 — 127
-128: 1000 0000
« -127: 1000 0001

e -1t 1111 1111

e 0: 0000 0000
e 1. 0000 0001

o 127: 01111111

SIGNED NUMBER: OVERFLOW

14

* Overflow might happen during signed number operation

— Example
MOV A, #+96 ; 60H
MOV R1, #+70 46H
ADD A, R1

— The result is larger than +127 - overflow

— The CPU will set OV =1 to indicate overflow.

— CPU will set OV to 1 in the following conditions
» Thereis a carry from D6 to D7 but no carry out of D7 (CY =0)
* Thereis a carry from D7 out but no carry from D6 to D7

— If there is carry from both D6 to D7 and D7 out, OV =0

SIGNED NUMBER: OVERFLOW

« Examples: find the OV flag in the following examples

- 1. MOV A, #-128
MOV R4, #-2
ADD A, R4

- 2. MOV A, #-2
MOV R1, #-5
ADD A, R1

- 3. MOV A, #+7
MOV R1, #+18
ADD A, R1

OUTLINE

16

e Logic and compare instructions

LOGIC INSTRUCTIONS

17

 ANL (and logic)
— ANL destination, source
— Bit by bit AND operation
 ORL (or logic)
— ORL destination, source
— Bit by bit OR operation
 XRL (xor logic)
— XRL destination, source
— Bit by bit XOR operation

 Example
MOV A, #15H
MOV RO, #3CH
ANL A, RO
XOR A, RO
ORL A, RO

; (dest) = (dest) AND (src)

; (dest) = (dest) OR (src)

; (dest) = (dest) XOR (src)

COMPARE INSTRUCTIONS

18

 CJNE (compare and jump if not equal)
— CJNE destination, source, target
— If destination = source, jump to target
o If destination >= source, set CY =0
 If destination < source, set CY =1

— Example: assume P1 is connected to a temperature sensor. Write a program to
continuously read the temperature and test it for the value of 75.

e IfT=75thenA=751fT<75,thenR1=T;If T>75thenR2=T

— Self study: Example 6-27 (p.160)

OUTLINE

19

e Rotate instruction and data serialization

ROTATION

20

RR (rotate the bits to the right)

- RRA

; can only be used with register A

— Cyclically rotate the bits of A to right

— Example

MOV A, #36H
RR A
RR A

RL (rotate the bits to the left)

- RLA

; can only be used with register A

— Cyclically rotate the bits of A to left

— Example

MOV A, #2CH
RL A
RL A

MSB — LSH

MSB «<—LSB

ROTATION

21

 RRC (rotate right through carry)
— RRCA ; can only be used with A
— Rotate right through carry

 RLC (rotate left through carry)
— RLCA ; can only be used with A
— Rotate left through carry

— Example
CLRC
MOV A, #26H
RRC A
SETBC
MOV A, #15H
RRL A

L MSB —— LSB |— CY —»l

MSB «——— LSB 4-'

22

ROTATION: SERIALIZING DATA

e Serializing data
— Transfer data one bit at a time.

— Example: write a program to transfer 41H serially via pin 2.1. Put two highs at
the start and end of the data. Send the byte LSB first.

HERE:

SETB P2.1
SETB P2.1
MOV R5, #8
RRC A

MOV P2.1,C

. DJNZ RS, HERE
 SETB P2.1

SETB P2.1

PIN

REG A 1 CY P2.1
D7 DO

;high
;high

;jsend the carry bit to P2.1

;high

;hiagh

ROTATION: SWAP

23

SWAP

— SWAP A ; can only be used with A
— Swap the lower nibble with the higher nibble

before:

D7 - D4

D3 - DO

SWAP

D3-D0

D7 - D4

before:

0111

0010

SWAP

0010

0111

— Example

MOV A, #23H
SWAPA

OUTLINE

24

« BCD, ASCII

BCD AND ASCII

 Binary, BCD and ASCII
— Some devices use packed BCD to represent number
» E.g. timer uses packed BCD to keep track of time
— Some devices use binary number (hex) to represent number
« E.g. sensor represent temperature in binary format
— The display device usually accepts ASCII code

e E.g. In order to display the character in LCD, we need to send the ASCII
code to the display device

— Usually we need to perform conversion between BCD, Binary, and ASCI|I
Key ASCII (hex) BCD (unpacked)

0 30 0000 0000

1 31 0000 0001

2 32 0000 0010

_ 3 33 0000 0011

Unpacked BCD - ASCII: add 30H to unpacked BCD 1 v 0000 0100

_ 5 35 0000 0101

ASCII = unpacked BCD: Mask out the upper nibble of ASCII ¢ 36 0000 0110
7 37 0000 0111

8 38 0000 1000

9 39 0000 1001

BCD AND ASCII: BCD = ASCII

« Packed BCD to ASCII conversion
— Packed BCD - unpacked BCD - ASCI|I
— From unpacked BCD to ASCII: add 30H to unpacked BCD

Eg. Packed BCD Unpacked BCD ASCII
29H 02H & O0SH 32H & 39H
0010 1001 0000 0010 & 0011 0010 &
0000 1001 0011 1001

— E.g. Assume Reg. A has a packed BCD. Convert it to two ASCII codes and
place them in R2 and R6.

MOV A, #29H ; packed BCD

MOV R2, A ; keep a copy of BCD in R2

ANL A, #0FH ; low nibble - unpacked BCD
ADD A, #30H ; unpacked BCD - ASCII

MOV R6, A : save the ASCII of low nibble to R6
MOV A, R2 ; get the original BCD

ANL A, #FOH ; get high nibble

SWAP A ; unpacked BCD

ADD A, #30H ; unpacked BCD - ASCII

MOV R2, A

BCD AND ASCII: ASCII = BCD

e Convert ASCII to packed BCD

Key ASCIT Unpacked BCD Packed BCD
4 34 00000100
7 37 00000111 01000111 or 47H

— ASCII = unpacked BCD: mask upper nibble with 0
— Unpacked BCD -> packed BCD: combine two lower nibble to 1 byte
— Example: convert the ASCII code “47” to a packed BCD

MOV A, #4°

ANL A, #0FH ; mask out upper nibble, unpacked BCD
SWAP A

MOV B, A ; store results in B

MOV A, #7’

ANL A, #0FH ; mask out upper nibble, unpacked BCD

ORL A, B ; combine two nibbles into one byte

BCD AND ASCII: LOOK UP TABLE FOR ASCII

e Using look up table for ASCII
— Commonly used in interfacing with keypad and LCD

— Example: P0.0, PO.1, P0.2 are connected to 3 switches. Write a program to
send the ASCII code ‘07, “1’, ... 7’ to P2 based on the combination of the 3

switches.
MOV DTPR, #MYDATA
MOV A, P1 : read switches
ANL A, #07H - mask all but lower 3 bits
MOVC A, @A+DPTR - A'Is the index into LUT
MOV P2, A
SIMP $; stay here
ORG 400H

MYDATA: DB ‘0’, ‘17, °2°, 37, ‘4’, *5’, ‘67, ‘7’

BCD AND ASCII: BINARY = ASCII

e Binary to ASCII conversion
— Many analog-to-digital converter provide output data in binary (hex) format
— To display the data, we need to convert it to ASCII
— Two steps: 1. binary = unpacked BCD, 2. unpacked BCD - ASCI|I

— Example:
-mmn- main program------
ORG O
ACALL BIN_2 DEC
ACLL DEC_2 ASCII

----- BIN_2 DEC--------
BIN_2 DEC:
MOV A, #235 : (A) = OEBH
MOB B, #10
DIV AB :(A)=23,(B)=5
MOV RO, B ; (RO) =5 = 05H, unpacked BCD
MOV B, #10
DIV AB ;(A)=2,(B)=3
MOV R1, B : (R1) = 3 =03H, unpacked BCD
MOV R2, A ; (R2) =2 =02H, unpacked BCD

RET

BCD AND ASCII: BINARY = ASCII

* Binary to ASCII conversion (Cont’d)

— BCD 2 ASCII

DEC_2_ASCII:
MOV A, RO : (A) = 05H
ORL A, #30H : BCD > ASCII
MOV RO, A . (RO) = 5’
MOV A, R1 : (A) = 03H
ORL A, #30H : BCD > ASCII
MOV R1, A (R1) =3
MOV A, R2 : (A) = 02H
ORL A, #30H : BCD > ASCII
MOV R2, A (R2) =2’

o Self-study: checksum byte in ROM (p.170)

