Department of Electrical Engineering
University of Arkansas TNIVERSITYZARKANSAS

ELEG3923 Microprocessor
Ch.7 Programming In C

Dr. Jingxian Wu
wuj@uark.edu

OUTLINE

Data types and time delay

I/O programming and Logic operations

Data conversion programs

Accessing code ROM space

DATA TYPE: C V.5. ASSEMBLY

« CV.S. Assembly language
— Advantage of C
 It’s easier to program in C compared to assembly.

» C code can be easily ported to other microcontroller, while assembly
language can usually be used for 1 type of microcontroller

» There are lots of function libraries written in C

— Advantage of assembly language
» The hex file generated by assembly is usually smaller
« Code efficiency is higher (faster)

e C programming

— C has become the standard for embedded system programming
» Object oriented language (C++, Java, C#) are usually not as efficient as C
o Cisflexible

— One of the main concerns in C programming for embedded system is to
generate a hex file that is small in size

* We need to pay attention to the size of variables during programming

DATA TYPE

e Data types
— unsigned char, signed char, unsigned int, signed int, shit, bit and sfr

e unsigned char

— 8-bit. Most popular data type, matches most registers. Represent ASCII code or integers
In the range of 0 ~ 255.

— Example: write a C program to send the ASCII code of 0, 1, 2, A, B, C to port 1 (demo)

#include <reg51.h> /I the definition of registers
void main (void)
{

unsigned char mynum[] = “012ABC”;

unsigned char z;

for (z =0; z <=5; z++)

P1=mynum[z]; //port1is denoted as P1

}

— Example: write a C program to toggle all bits of P2 continuously

#include <reg51.h>
void main(void)

{
for(;;) Il infinite loop
{
P1 = 0x55; /I hex number: 0x55
P1=0xAA:;
}

DATA TYPE

e signed char
— an 8-bit number with the most significant bit representing sign (+ or -)
» Range: -128 ~ 127 (range of unsigned char: 0 ~ 255)
— Example: write a C program to send -3 to 3 to port 1

#include <reg51.h>
void main(void)

{
char mynum[] = {-3,-2,-1,0,1,2,3}; /I signed char
unsigned char z;
for (z = 0; z<=6; z++)
P1 = mynum]z];
}

e unsigned int
— 16-bit (needs to registers), range: 0 ~ 65535 (FFFFH)
— E.g.: unsigned int a;
e signed int
— 16-bit, MSB represents sign. Range: -32768 ~ 32767
— E.g.;inta;
— Since int requires twice as many memory space as char, use unsigned or
signed int only when the number cannot be represented with unsigned or

signed char.

DATA TYPE

e shit
— Single bit, used to access single-bit addressable registers
— Example: write a C program to toggle bit DO of P1 50,000 times

#include <reg51.h>
sbit MYBIT = P1"0;
void main(void)

{
unsigned int z;; 50000 times, cannot use char
for (z=0; z<=50000;z++)
{
MYBIT =0;
MYBIT = 1;
}
}

* bit
— Used to access single bit of bit-addressable RAM (20H - 2FH)

— Example: bit mybit = 0; // the compiler will assign a RAM space to a
[fautomatically

o sfr
— Used to access special function registers
— example: sfr ACC = OxEQ; // the address of reg. A

DATA TYPE: TIME DELAY

 Time delay
— Two methods to achieve time delay:
e Timer (Ch.9)

« Loop
— When using loops in C, it’s difficult to determine the exact time delay by means of
calculation
» For the same C code, different compilers usually will generate different assembly
codes

» Thus the same C codes with different compilers might generate different delays
» The only way to know the exact delay is through oscilloscope.

#include <reg51.h>
void main(void)

{
unsigned int x;
while(1)
{
P1 = Ox55;
for (x=0;x<40000;x++); //delay
P1=0xAA;
for (x=0;x<40000;x++); //delay
}

OUTLINE

e |/O programming and Logic operations

/O PROGRAMMING

 Bytesize 1/O

— Example: write a program to get a byte of data from PO. If it’s less than 100,
send it to P1; otherwise send it to P2

#include <reg5l1.h>
void main(void)

{

unsigned char mybyte;

| PO=0xFF; //make PO an input port
while (1)
{

nybyte=P0; //get a byte from PO

if (mybyte<100)
Pl=mybyte; //send it to Pl if less than 100

else
P2=mybyte; //send it to P2 if more than 100

o Self study: examples 7-9, 7-10

/O PROGRAMMING

» Bit-addressable 1/O Programming

— Example: write a program to monitor bit P1.5. If it is high, send 55H to PO;
otherwise send AAH to P2

#include <«regb51.h>
sbit mybit = P1%s5; //notice the way single bit is declared
void main(void)

{

mybit=1; //make mybit an input
while (1)
{
- if (mybit==1)
P0=0x55;
else
P2=0xAA;

/O PROGRAMMING: SFR REGISTERS

e Access SFR register
— Use sfr or shit
— Example: read PO, send the result to P1; read in the value of P2.6

sfr regA = OxEO;
sfr PO = 0x80;
sfr P1 = 0x90;
sbit inbit = OXAG; / bit address for P26
bit mybit; I/ compiler will automatically allocate memory to mybit
void main(void)
{
unsigned int z;
PO = Oxff; // input mode
inbit = 1; //input mode
for (z = 0; z<50000; z++)

{

regA = PO;

P1 =regA;

mybit = inbit; /lread P26 to mybit
¥

LOGIC

12

* logic operatorsin C
— && (and), || (or), ! (not)
— Example: if (varl <3 && var2 ==1)
if (1(var > 5))
» Bit-wise logic operators
— Bit-by-bit logical operations: & (and), | (or), * (xor), ~ (not)
— Shifting: << (shift to left) >> (shift to right): NOT cyclic shift!
— Example
#include <reg51.h>
void main(void)
{
P0=0x35 & OxOF;
P1=0x04 | 0x68;
P2=0x04 " 0x78;
P3=~0x55;
PO = 0x35 << 3;

LOGIC: DATA SERIALIZATION

13

Data serialization
— 1. using serial port (Ch. 10)
— 2. using shifting operators

— Example: write a C program to bring in a byte of data serially one bit at a time
via P1.0. LSB should come first

#include <reg51.h>
sbit P1b0 = P1"0;
sbin ACCMSB = ACC/,
void main(void)
{
unsigned char X;
for (x=0; x<8; x++)
{
ACCMSB =P1B0;
ACC =ACC>>1;

OUTLINE

14

e Data conversion programs

DATA CONVERSION: PACKED BCD TO ASCII

15

« Packed BCD to ASCII
— Recall: packed BCD - unpacked BCD - ASCI|I

— Example: Write a C program to convert packed BCD 0x29 to ASCII, send the
result to P1 and P2

#include <reg51.h>
void main(void)
{
unsigned char x, Y, z;
unsigned char packedBCD = 0x29;
X = packedBCD & 0xOF; Il extract low nibble

P1=x|0x30; // unpacked BCD->ASCII
X = packedBCD & 0xFO; /lextract high nibble

y = X>>4; /I shift it to low nibble

P2 =y | 0x30; /lunpacked BCD - ASCII

DATA CONVERSION: ASCII TO BCD

16

o ASCII to packed BCD
— ASCII = unpacked BCD - packed BCD
— Example: Write C program to convert “47” to packed BCD

DATA CONVERSION: BINARY TO ASCII

17

* Binary (or decimal) to ASCII
— iteratively divided by 10 and keep the remainder
— Example: convert OxFD = 1111 1101 = 253D to ASCII: ‘2’, ‘5°, ‘3’
#include <reg51.h>
void main(void)
{
unsigned char quotient, remainder, binbyte;
binbyte = OXFD; //OxFD=253

quotient = binbyte/10; I/ quotient = 25
remainder = binbyte % 10; // remainder = 3
PO = remainder | 0x30; /[PO ="3
binbyte = quotient; I/ binbyte = 25;
quotient = binbyte/10; I/ quotient = 2
remainder = binbyte%10; // remainder =5
P1 = remainder | 0x30; [[P1="5

P2 = quotient | 0x30; [[P1l="2

OUTLINE

18

* Accessing code ROM space

RAM AND ROM

19

e In 8051, data can be stored In
- RAM (e.g. MOV)
— ROM (e.g. MOVC)
— External ROM (e.g. MOV X)

 RAM

— Compiler will automatically allocate RAM space for declared variables
(demo)

RO - R7: bank 0 (O0OH - 07H)
» Variables (including array): address 08 and beyond
o stack: address right after variables.

20
RAM AND ROM

e Accessing ROM inC
— To require the compiler store data in ROM, use the “code” keyword
» Without code keyword, all the data will be stored in RAM
— The compiler will automatically allocate ROM space for the variables.
— Example
#include <reg51.h>
void main(void)
{
code unsigned char mynum[] = “ABCDEF”;
unsigned char z;
for (z = 0; z<=6; z++)
P1 = mynum]z];

