Microprocessor
Ch.2 Assembly Language Programming

OUTLINE

Inside 8051

* Introduction to assembly programming

* Program counter and ROM space

 PSW register and flag bits

* Register bank and stack

INSIDE 8051: BLOCK DIAGRAM

* Block diagram

EXTERNAL
INTERRUPTS
l ON-CHIP
ROM
INTERRUPT |[<—— for ON-CHIP ETC.
CONTROL) program } TIMER 0 |=—
< code RAM TIMER 1 |<—
T
CPU <
BUS 41/0 SERIAL
OSsC CONTROL PORTS PORT
IS N
+ = PO P2 P1 P3 TXD RXD
i I
ADDRESS/DATA

SLNdNI 431NNOD

INSIDE 8051: REGISTERS

* Registers (inside CPU)

— Most widely used registers:
« 8-bit registers: A (accumulator), B, RO ~ R7, PSW (program status word)
» 16-bit registers: DPTR (data pointer), PC (Program counter)

— Most registers are 8-bit
» The bits inside one register are designated as 7, 6, 5,4, 3,2, 1,0
* MSB (most significant bit): bit 7
« LSB (least significant bit): bit O

an 8-bit register: 7 6 5 4 3 2 1 0

DPTR DPH DPL

PC PC (program counter)

~
(Y]

Il B2l R
= =] @

T

OUTLINE

e Introduction to assembly programming

ASSEMBLY: MOV

« MOV

— MOV destination, source

» Copies data from source to destination

— Example: Comments
« MOV A, #55H (% load 55H into Teg. A >
« MOV RO, A . copy contents of A into RO
« MOV R3, #16 ; load 16 into R3
« MOV A, R3 ; copy contents of R3 into A
— Notes:
» Immediate number: a regular constant number, always prefixed by a pound
sign #.

* A post-fix of ‘H’ means this is a hex number
— Opcode v.s. Mnemonics
* The Opcode for “MOV A, #55H” is: 01110100 01010101 (74H 55H)
* CPU will only understand Opcode (machine code)
« MOV is called the mnemonic for Opcode = easy to remember, easy to read.

* Mnemonics will be translated to Opcode by an assembler.

ASSEMBLY: RUN PROGRAM

 Assembling and running an 8051 program (Demo)
— 1. Use an editor to type in your assembly program (source file)
» Usually has an extension of *.asm, *.a51
— 2. Assembler

* An assembler program converts the mnemonics into binary machine code
that can be understood by the MCU.

» Assembler will generate two files
— 1) list file (*.1st)
» Optional. List all the instructions and addresses.
» Helpful for program development
— 2) object file (*.obj)
» Binary file contains the binary machine code
— 3. Linker
« Combine one or more obj files into an absolute object file (no extension)
— 4. Object to hex converter

» Convert absolute obj file to a file with extension “hex”, which can be
burned into the ROM of the MCU.

— 5. Burn the HEX file to 8051.

ASSEMBLY: DEVELOPMENT ENVIRONMENT

* Host
— The PC used to develop the program, it usually has
 Editor (edit source file)
» Compiler (convert high level language to machine code *.obj)

» Assembler (convert assembly language to machine code *.obj)

 Linker (link several obj files into an absolute obj file)
» Obj to Hex converter (convert obj file to Hex file)
» Loader (load the hex file to target)
 Target
— The development hardware with embedded microcontroller.

— It can be connected to Host through various interfaces
 E.g. RS232, USB, JTAG, IEEE139%4,

owner
선

ASSEMBLY: MOV

 Some additional notes about MOV (Cont’d)
— MOV #0F3H
« If the number starts with a letter, put ‘0’ in front of it.
— MOV A, #7F2H ; possible error
. Why(.;\
— MOV A, #257 ; possible error
. Why‘.;\
— MOV A, #34H is different from MOV A, #34&)
— MOV A, #34H is different from MOV A, 34H
* We will discuss the meaning of MOV A, 34H later.

owner
삽입된 텍스트
 more bits than MCU can handle

owner
삽입된 텍스트
more bits than allowed

owner
노트
34 is decimal

10
ASSEMBLY: ADD

« ADD

— ADD A4, source
* Add the contents in Reg. A with source, and store the result in A
* Review: Reg. A is also called accumulator
e Destination must be A!!!

— Examples
e 1. MOV A, #25H ;load 25H into A

MOV R2, #34H ;load 34H into R2

ADD A, R2 ;A=A+R2
. 2. MOV R1, #0F5H ;load F5H into A (demo)
MOV A, #0 :load 0 into A
ADD A, R1 ;
ADD A, #34 ; what 1s the value of A after this operation?

— Be careful of overflow (the result requires more than 8 bits)!
* Only the lower 8 bits will be stored in register A

» The carry flag in the PSW (program status word) register will be set if an
overflow happens (we will talk about PSW later this chapter).

11
ASSEMBLY: STRUCTURE

e Structures of assembly language
— 1. A series of lines of assembly language instructions and/or directives
— 2. An assembly language instruction consists of up to 4 fields
[label:] mnemonic [operands] [;comments]
» Label: allows the program to refer to a line of code by name
— E.g. HERE: SJIMP HERE
¢ Mnemonic and operands

— The combination of mnemonic and operands will be translated to
binary machine code

— E.g. MOV A, #23H ;Opcode: 0111 0100 (7423H)

ORG OH ;start (origin) at location 0 723H
MOV R5,#25H ;load 25H into RS MOV A
MOV R7,#34H ;load 34H into R7
MOV A, #0 ;load 0 into A
ADD A,R5 ;add contents of R5 to A
;now A = A + RS
ADD A,R7 ;add contents of R7 to A
;now A = A + R7
ADD A,#12H ;add to A value 12H
;now A = A + 12H
HERE : SOMP HERE ;stay in this loop
END ;end of asm source file

ASSEMBLY: DIRECTIVES

e Directives

— A pseudo-code that cannot be translated into machine code

— Used to notify assembler of certain operations

* E.g. END: notify assembler the end of the source file.

« Commonly used directives
— ORG: origin
* Indicate the beginning of the address

* The number after ORG can be either in hex or decimal
— DB: define byte (demo directives)
* Define an 8-bit data

DATAL:
DATAZ :
DATAZ3:
DATAA4 :

DATAG :

ORG
DB
DB
DB
ORG
DB
ORG
DB

500H

28 ;DECIMAL(1C in hex)
00110101B ;BINARY (35 in hex)gj
39H ; HEX

510H

n2591n ~ ;ASCII NUMBERS

518H

"My name is Joe" ;ASCII CHARACTERS

owner
노트
byte long but not always as below

ASSEMBLY: DIRECTIVES

« Commonly used directives
— EQU: equate
* Define a constant without occupying a memory location
e [t DOES NOT use any memory space!
» The constant value can be used later in the program

— To improve the readability of the program
» Give a name to a constant
— To improve code efficiency

» If the same constants are used twice in the program, with the
EQU directive, we only need to change it in one location if its
value 1s changed

» We should avoid using constant directly, and use the EQU
directive as often as possible.

« Example (Demo directives)
COUNT EQU 25H
MOV R3, #COUNT
MOV A, #COUNT

owner
선

OUTLINE

14

* Program counter and ROM space

ROM SPACE: PROGRAM COUNTER

 Program counter (PC)

— A 16-bit register inside 8051 that points to the ROM address of the next
instruction to be executed

— Every time the CPU fetches the opcode from the program ROM, the PC will
be automatically incremented to point to the next instruction

 If the current opcode is one byte, PC will be incremented by 1 (Demo PC)
— E.g. MOV A, RS, Opcode: 1110 1101 (EDH)
e
MOV Rn =3
« If the current opcode is two bytes, PC will be incremented by 2 (Demo PC)
— E.g. MOV A, #0H, Opcode 0111 0100 0000 000Q (7400H)
/7

—‘\
MOV A 00H
1 0000 ORG OH ;start at location 0
2 0000 7D25 MOV R5,#25H ;load 25H into R5 - 30‘:}‘:)““ ?D"de
3 0002 7F34 MOV R7,#34H ;load 34H into R7 0001 25
4 0004 7400 MOV A, #0 ;load 0 into A 0002 7F
5 0006 2D ADD A,R5 ;add contents of R5 to A 0003 34
;jnow A = A + R5 0004 74
6 0007 2F ADD A,R7 ;add contents of R7 to A 0005 00
;now A = A + R7 0006 2D
0008 2412 ADD A, #12H ;add to A value 12H 0007 2F
;now A = A + 12H 0008 24
000A 80FE HERE: SJMP HERE ;stay in this loop 0009 12
000C END ;end of asm source file 000A 80
000B FE

ROM SPACE: PROGRAM COUNTER

16

 Program counter (Cont’d)

— When 8051 wakesup, the PC has an initial value of 0000H

« We must put our initial program at location 0000H

« What will happen if our program is not at 0000H? (Demo PC)

* ROM space
— ROM is used to store program =¥ it’s accessed by PC.

— Address range that can be accessed by program counter

 PC has 16-bits
— Start address: 0000H (0000 0000 0000 0000)

— Maximum end address: FFFFH (1111 1111 1111 1111)

— Each address corresponds to 1 byte@

* The maximum ROM space that can be accessed by PC is: 64 KB

* Most 8051 chips have a ROM size less than 64 KB

2716

owner
텍스트 상자
2^16

owner
노트
Data

17
ROM SPACE: EXAMPLE

« ROM space examples

— 1. Dallas Semiconductor DS89C430 has 16KB on chip ROM. Write down the
ROM address range in hex format. byte

0000

3FFF

DS89C420/30

— 2. The ROM address range of Atmel AT89C51 is 0000H to OFFFFH. What 1s

size of the ROM in AT89C51 byte

0000

OFFF

8051
AT89C51

OUTLINE

18

 PSW register and flag bits

PSW:

19

« PSW: program status word register
— An 8-bit register used to indicate the status of the program and uC.
* Only 6 bits are used by 8051
» The 2 remaining bits can be used by users (programmers).

— Also called flag register.

— 4 conditional flags: indicate some conditions after an instruction is executed
* CY (carry), AC (auxiliary carry), P (parity), OV (overflow)

— 2 register bank selection bits: (will be discussed later

CY AC FO RS1 RSO ov -- P
CY PSW.7 Carry flag.
AC PSW.6 Auxiliary carry flag.
FO PSW.5 Available to the user for general purpose.
RS1 PSW4 Register Bank selector bit 1.
RSO PSW3 Register Bank selector bit 0.
ov PSW.2 Overflow flag.
-- PSW.1 User-definable bit.
P PSW.0 Parity flag. Set/cleared by hardware each instuction cycle

to indicate an odd/even number of 1 bits in the accumulator.

20
PSW: CONDITIONAL FLAGS

PSW conditional flags
— CY (carry flag, PSW.7)

» The flag 1s set (value changed to 1) whenever there is a carryout from the
D7 bit of RA. (demo add)

— E.g. MOV A, #9CH
ADD A, #64H
What is the value in A and PSW.7?

» The CY bit can be set or cleared (value changed to 0) by the following
instructions (demo add)

— SETB C ; set the CY bitto 1
— CLR C ; clear the CY bit to 0
— AC (auxiliary carry flag, PSW.6)

 Ifthere is a carry from the bits D3 to D4 during an ADD or SUB
operation, this bit is set; otherwise it’s cleared

« E.g. What is the value of CY and AC after the following instructions?
MOV A, #38H
ADD A, #2FH

PSW: CONDITIONAL FLAGS

21

PSW conditional flags (Cont’d)
— P (the parity flag, PSW.0)
 If the number of 1s in register A 1s odd, then P = 1
 If the number of 1s in register A is even, then P =0
* E.g. find the values of CY, AC, and P after the following instructions
MOV A, #88H
ADD A, #93H

— OV (the overflow flag, PSW.2)

» The bit is set whenever the result of a signed number operation is too
large (we will discuss signed number operation in Ch. 6)

* OV is used for signed arithmetic (to detect whether there is an overflow)

* CY is used for unsigned arithmetic (to detect whether there 1s a carry)

OUTLINE

22

* Register bank and stack

23
REGISTER BANKS: RAM SPACE

« RAM space

— There are total 128 bytes of RAM in 8051 (recall: the max ROM size that can
be supported by 8051 1s 64 KB corresponding to 16-bit PC)

e Address range: O0H ~

DO NOT confuse with ROM address range (ROM can only be accessed
with the PC register)

— The 128 bytes are divided into three groups
 00H - 1FH (bytes): gl it
— register bank and stacks
 20H —2FH (bytes):
— bit-addressable memory
 30H-7FH (bytes):
— “scratch pad”

Scratch Pad RAM

{ Bit-Addressable RAM

1 Register Bank 3

— Storing data and parameters Register Bank 2

Register Bank 1 (Stack)

Register Bank 0

REGISTER BANKS

« Register banks (total 32 bytes)
— The 32 bytes are divided into 4 banks with 8 bytes in each bank
* Each bank has 8 8-byte registers: RO — R7
— When programming, e.g. “MOV A, R0”, which RO are actually used?
» Depends on the values of the RS1 (PSW.4) and RSO (PSW.3) bits in PSW.
* When 8051 powered on, RS1 = RS0 =0 - bank 0 is used by default

RSI (PSW.4) RS0 (PSW.3)

Bank 0 0 0

Bank 1 0 1

Bank 2 1 0

Bank 3 1 1

Bank 0 Bank 1 Bank 2 Bank 3

TR FRES 7[_ R7] [_R7]
6[RS | B[_R6] 16[R6 | IE[_R6]
s &] D[RS | isC &] [’ |
4[_R4_] c[R4] 14[R4 | ICE A
] B[R3] 13[_R3 | 1B[_R3]
2[R2] Al R2_] 12f K2 1A| R2 |
1R oC R | u[R_] 19 _RL_
o[_R0_| s_RO_] 10[_RO_| 18[_RO_]

25

REGISTER BANKS: EXAMPLES

 Examples (demo)

— Fill out the contents of the memory between 00H — 1FH after the following

operations
— 1.

MOV RO, #99H
MOV R7, #63H

SETB PSW .4 ; set PSW.4 to 1
MOV RO, #76H

CLR PSW 4

SETB PSW.3

MOV RS, #12H

; the register banks can be directly accessed through its address
MOV 06H, 18H ; RAM address 06H = bank 0, R6
MOV 10H, 25H ; RAM address 10H = bank 2, RO

26
REGISTER BANKS: STACK

* Stack
— A section of RAM used by CPU to temporarily store information
 First in last out (FILO)
— There are two 8051 instructions for stack
» PUSH reg: put the byte stored in the register into the top of the stack
— E.g. MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 6 ; push R6 into stack
PUSH 1 ; push R1 into stack
PUSH 4 ; push R4 into stack
* POP reg: pop out one byte from the top of the stack and save it in reg.
— E.g. POP 3
POP 5

POP 2 10H
09H

08H

REGISTER BANKS: STACK

* SP register
— How does the CPU know where is the top of the stack?

» The CPU has a special register, SP (statck pointer), to always point at the
top of the stack

— When 8051 is powered on, SP contains a value of 07H
» The first byte pushed into stack will be at 08H (register bank 1)

— Every time a PUSH is executed, SP will automatically increase by 1
— Every time a POP is executed, SP will automatically decrease by 1
— Demo

MOV RO, #25H

MOV R1, #12H

MOV R2, #0F3H

PUSH 0 ; push R6 into stack

PUSH 1 ;push R1 into stack

PUSH 2 ; push R4 into stack

POP 3

POP 4

POP 5

28
REGISTER BANKS: STACK

* SP register
— We can change the value of the SP register manually
« MOV SP, 30H
— Conflicts between register bank 1 and stack

* Register bank 1 and the default stack are using the same address (08H —
OFH)

« If in a program we need to use register bank 1, we need to reallocate the
stack to somewhere else (e.g. scratch pad, 30H)

— What if the stack is empty and we try to do POP (there are more POP than
PUSH)? (Demo stack)

» The SP will keep decreasing

* We should avoid unequal number of PUSH and POP in our program
— What if we keep PUSHing?

» The SP will keep increasing until we run out of memory.
— We should be very careful with stack during programing

» Plan a section of memory space for stack before programming

* Do not exceed the upper limit or lower limit of in program.

REGISTER: STACK

29

 (Call instruction

— Whenever the “CALL” instruction 1s executed, CPU will use stack to
temporarily store information

« SP and stack contents will change

» We will discuss more details later

