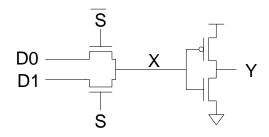

Introduction to CMOS VLSI
Design

Lecture 16: Circuit Pitfalls

Outline

- ☐ Circuit Pitfalls
 - Detective puzzle
 - Given circuit and symptom, diagnose cause and recommend solution
 - All these pitfalls have caused failures in real chips
- Noise Budgets
- Reliability

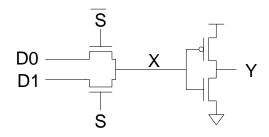
- ☐ Circuit
 - 2:1 multiplexer



☐ Principle:

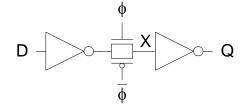
- □ Symptom
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.
 - Or fails in SFSF corner.

□ Solution:


- ☐ Circuit
 - 2:1 multiplexer

- ☐ Symptom
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.
 - Or fails in SFSF corner.

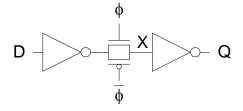
- ☐ Principle: Threshold drop
 - X never rises above V_{DD}-V_t
 - V_t is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.
- □ Solution:


- ☐ Circuit
 - 2:1 multiplexer

- ☐ Symptom
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.
 - Or fails in SFSF corner.

- ☐ Principle: Threshold drop
 - X never rises above V_{DD}-V_t
 - V₁ is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.
- □ Solution: Use transmission gates, not pass transistors

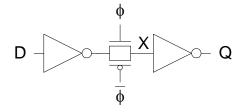
- ☐ Circuit
 - Latch



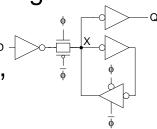
☐ Principle:

□ Solution:

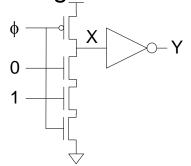
- □ Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Qspontaneously flips to 1


- ☐ Circuit
 - Latch

- ☐ Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Qspontaneously flips to 1

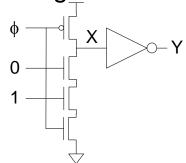

- ☐ Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge
- □ Solution:

- ☐ Circuit
 - Latch



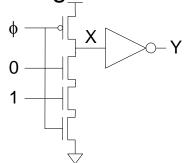
- ☐ Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Qspontaneously flips to 1

- □ Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge
- □ Solution: Staticize node with feedback
 - Or periodically refresh node (requires fast clock, not practical processes with big leakage)

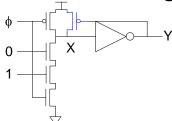

- ☐ Circuit
 - Domino AND gate

- ☐ Symptom
 - Precharge gate (Y=0)
 - Then evaluate
 - Eventually Y spontaneously flips to 1

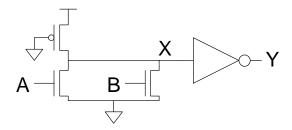
- ☐ Principle:
- □ Solution:


- ☐ Circuit
 - Domino AND gate

- □ Symptom
 - Precharge gate (Y=0)
 - Then evaluate
 - Eventually Y spontaneously flips to 1


- ☐ Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge
- □ Solution:

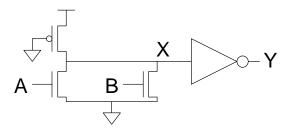
- ☐ Circuit
 - Domino AND gate



- ☐ Symptom
 - Precharge gate (Y=0)
 - Then evaluate
 - Eventually Y spontaneously flips to 1

- ☐ Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge
- □ Solution: Keeper

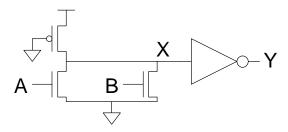
- ☐ Circuit
 - Pseudo-nMOS OR



☐ Principle:

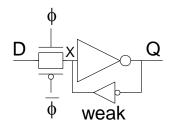
□ Solution:

- □ Symptom
 - When only one input is true, Y = 0.
 - Perhaps only happens in SF corner.


- ☐ Circuit
 - Pseudo-nMOS OR

- ☐ Symptom
 - When only one input is true, Y = 0.
 - Perhaps only happens in SF corner.

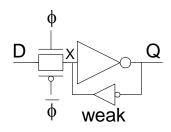
- □ Principle: Ratio Failure
 - nMOS and pMOS fight each other.
 - If the pMOS is too strong, nMOS cannot pull X low enough.
- □ Solution:


- ☐ Circuit
 - Pseudo-nMOS OR

- □ Symptom
 - When only one input is true, Y = 0.
 - Perhaps only happens in SF corner.

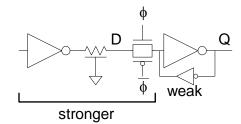
- Principle: Ratio Failure
 - nMOS and pMOS fight each other.
 - If the pMOS is too strong, nMOS cannot pull X low enough.
- □ Solution: Check that ratio is satisfied in all corners

- ☐ Circuit
 - Latch

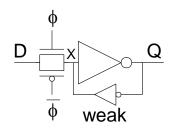


☐ Principle:

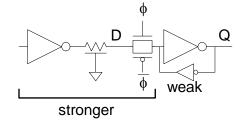
□ Solutions:


- ☐ Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

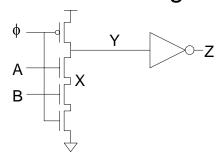
- ☐ Circuit
 - Latch



- □ Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.
- □ Principle: Ratio Failure (again)
 - Series resistance of D driver, wire resistance, and tgate must be much less than weak feedback inverter.



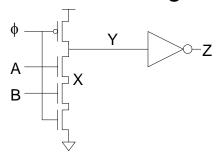
- ☐ Circuit
 - Latch



- ☐ Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.
- □ Principle: Ratio Failure (again)
 - Series resistance of D driver, wire resistance, and tgate must be much less than weak feedback inverter.

- Solutions: Check relative strengths
 - Avoid unbuffered diffusion inputs where driver is unknown

- ☐ Circuit
 - Domino AND gate

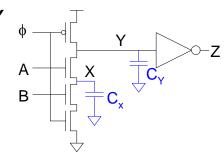

- ☐ Principle:
- ☐ Solutions:

- ☐ Symptom
 - Precharge gate while

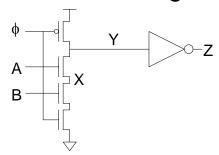
$$A = B = 0$$
, so $Z = 0$

- Set $\phi = 1$
- A rises
- Z is observed to sometimes rise

- ☐ Circuit
 - Domino AND gate



- □ Principle: Charge Sharing
 - If X was low, it shares charge with Y
- ☐ Solutions:

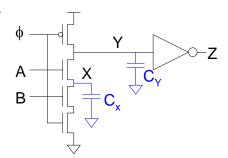

- ☐ Symptom
 - Precharge gate while

$$A = B = 0$$
, so $Z = 0$

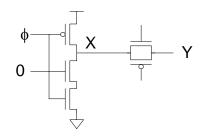
- Set $\phi = 1$
- A rises
- Z is observed to sometimes rise

- ☐ Circuit
 - Domino AND gate

- ☐ Principle: Charge Sharing
 - If X was low, it shares charge with Y
- □ Solutions: Limit charge sharing

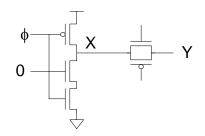

$$V_{x} = V_{Y} = \frac{C_{Y}}{C_{x} + C_{Y}} V_{DD}$$

- Safe if C_Y >> C_X
- Or precharge node X too


- □ Symptom
 - Precharge gate while

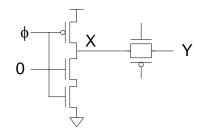
$$A = B = 0$$
, so $Z = 0$

- Set $\phi = 1$
- A rises
- Z is observed to sometimes rise


- ☐ Circuit
 - Dynamic gate + latch

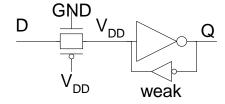
- ☐ Principle:
- Solution:

- ☐ Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls


- ☐ Circuit
 - Dynamic gate + latch

- ☐ Principle: Charge Sharing
 - If Y was low, it shares charge with X
- □ Solution:

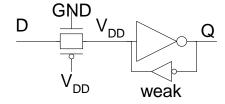
- □ Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls


- ☐ Circuit
 - Dynamic gate + latch

- □ Principle: Charge Sharing
 - If Y was low, it shares charge with X
- □ Solution: Buffer dynamic nodes before driving transmission gate

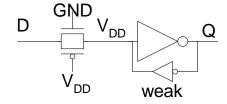
- ☐ Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls

- ☐ Circuit
 - Latch

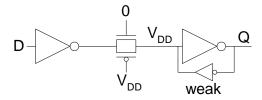


□ Principle:

□ Solution:


- □ Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

- ☐ Circuit
 - Latch

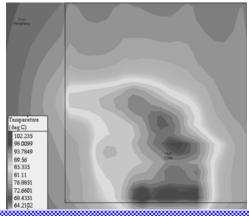


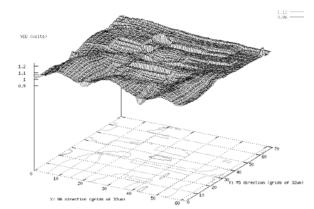
- ☐ Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver
- □ Principle: Diffusion Input Noise Sensitivity
 - If D < -V_t, transmission gate turns on
 - Most likely because of power supply noise or coupling on D
- □ Solution:

- ☐ Circuit
 - Latch

- □ Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver
- □ Principle: Diffusion Input Noise Sensitivity
 - If D < -V_t, transmission gate turns on
 - Most likely because of power supply noise or coupling on D
- ☐ Solution: Buffer D locally

- ☐ Circuit
 - Anything

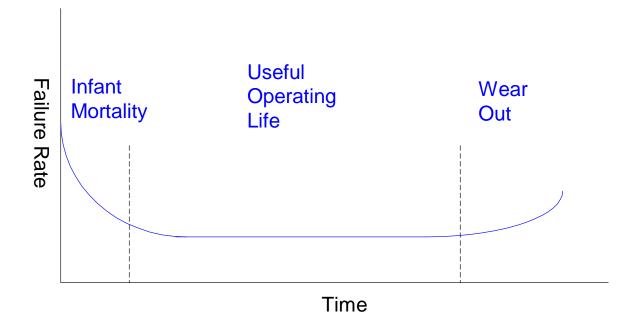

☐ Principle:


- ☐ Symptom
 - Some gates are slower than expected

- ☐ Circuit
 - Anything

- ☐ Symptom
 - Some gates are slower than expected

☐ Principle: Hot Spots and Power Supply Noise


16: Circuit Pitfalls CMOS VLSI Design

Noise

- Sources
 - Power supply noise / ground bounce
 - Capacitive coupling
 - Charge sharing
 - Leakage
 - Noise feedthrough
- Consequences
 - Increased delay (for noise to settle out)
 - Or incorrect computations

Reliability

- □ Hard Errors
- Soft Errors

16: Circuit Pitfalls

CMOS VLSI Design

Slide 30

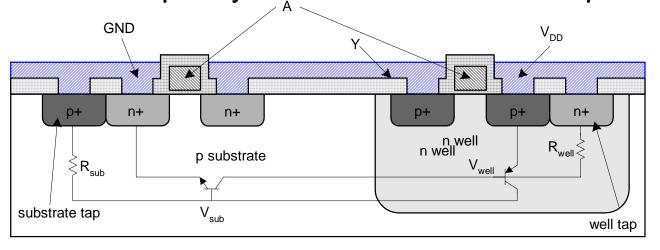
Electromigration

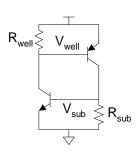
- "Electron wind" causes movement of metal atoms along wires
- ☐ Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Black's Equation: $MTTF \propto \frac{e^{\frac{L_a}{kT}}}{J_{dc}^{n}}$
 - Typical limits: J_{dc} < 1 2 mA / μ m²
- □ See videos

Self-Heating

- ☐ Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower
- ☐ Self-heating limits AC current densities for reliability

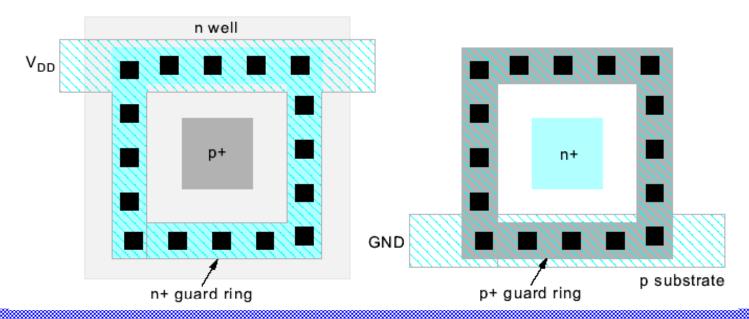
$$I_{rms} = \sqrt{\frac{\int\limits_{0}^{T} I(t)^{2} dt}{T}}$$


- Typical limits: J_{rms} < 15 mA / μ m²


Hot Carriers

- ☐ Electric fields across channel impart high energies to some carriers
 - These "hot" carriers may be blasted into the gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in V_t
 over time
 - Eventually V_t shifts too far for devices to operate correctly
- ☐ Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input risetime and long propagation delays

Latchup


- □ Latchup: positive feedback leading to V_{DD} GND short
 - Major problem for 1970's CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps

Guard Rings

- ☐ Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- ☐ Surround sensitive region with guard ring to collect injected charge

16: Circuit Pitfalls

CMOS VLSI Design

Slide 35

Overvoltage

- ☐ High voltages can damage transistors
 - Electrostatic discharge
 - Oxide arcing
 - Punchthrough
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents
- ☐ Requires low V_{DD} for thin oxides and short channels
- ☐ Use ESD protection structures where chip meets real world

Summary

- ☐ Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- ☐ Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- ☐ Very important to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren't worth the paper they are printed on unless you back them up with a tool.

Soft Errors

- ☐ In 1970's, DRAMs were observed to occasionally flip bits for no apparent reason
 - Ultimately linked to alpha particles and cosmic rays
- Collisions with particles create electron-hole pairs in substrate
 - These carriers are collected on dynamic nodes, disturbing the voltage
- Minimize soft errors by having plenty of charge on dynamic nodes
- Tolerate errors through ECC, redundancy