Lecture 1:

Basic switching concepts

circuit switching message switching packet switching

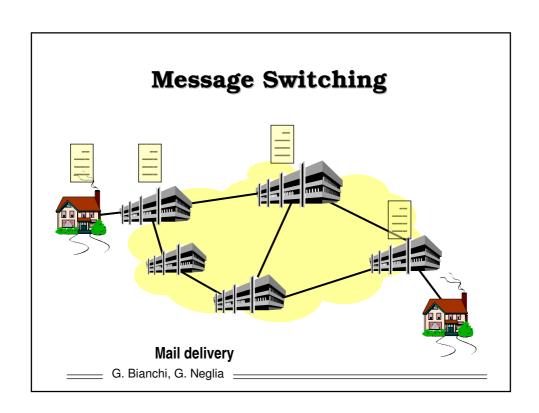
_____ G. Bianchi, G. Neglia _____

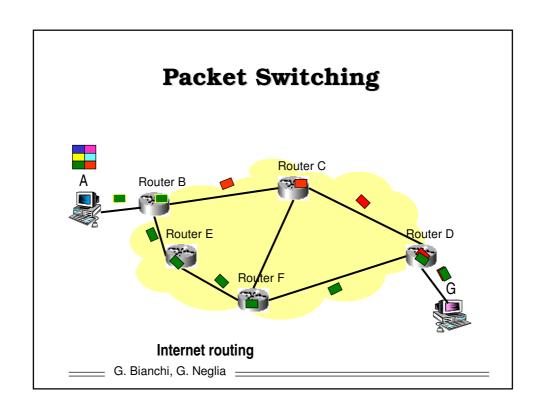
Switching

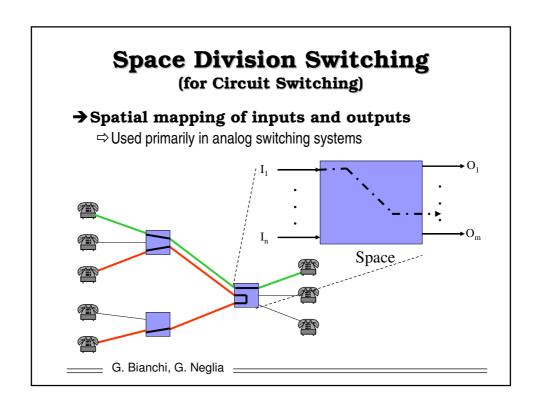
→ Circuit Switching

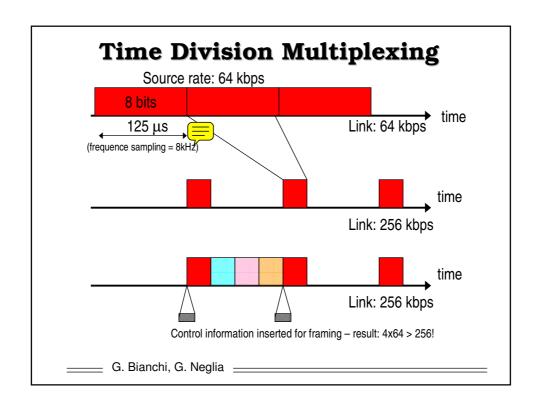
- ⇒ Fixed and mobile telephone network
 - → Frequency Division Multiplexing (FDM)
 - →Time Division Multiplexing (TDM)
- ⇒ Optical rings (SDH)

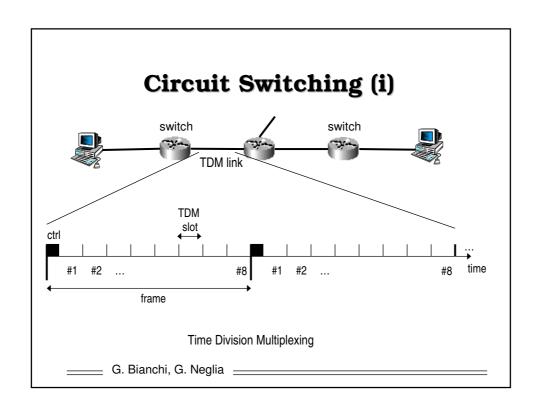
→ Message Switching

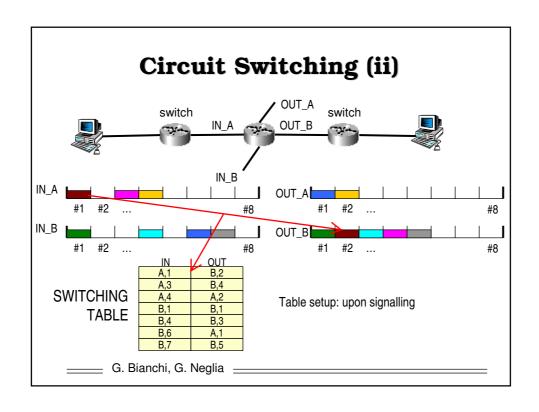

- ⇒ Not in core technology
- ⇒ Some application (e.g. SMTP)

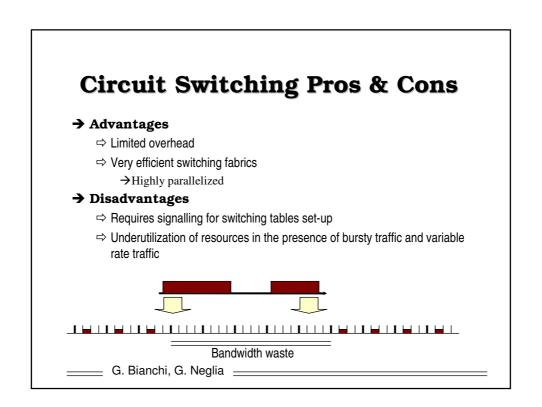

→ Packet Switching


- ⇒Internet
- ⇒ Some core networking technologies (e.g. ATM)


____ G. Bianchi, G. Neglia _____







Example of bursty traffic (ON/OFF voice flows)

On (activity) period

OFF period

VOICE SOURCE MODEL for conversation (Brady):

average ON duration (talkspurt): 1 second average OFF duration (silence): 1.35 seconds

$$activity = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{1}{1 + 1.35} = 42.55\%$$
 (before packetization)

Efficiency = utilization % = source activity

__ G. Bianchi, G. Neglia _____

Message vs Packet Switching

→ Message Switching

⇒ One single datagram

header message

overhead = header + message

→ Packet Switching

- ⇒ Message chopped in small packets
- ⇒ Each packet includes header
 - →like postal letters! Each must have a specified destination data

header packet

header packet header packet

 $\boxed{\frac{\textit{message}}{\textit{packet}_\textit{size}}}$ header p

 $n \cdot header + message$

Message switching overhead lower than packet switching

__ G. Bianchi, G. Neglia _____

Message vs Packet Switching

→ Message Switching

- ⇒ One single datagram
 - →either received or lost
 - →One single network path

→ Packet Switching

- Many packets generated by a same node and belonging to a same destination
 - → may take different paths (and packets received out of order need sequence)
 - → May lose/corrupt a subset (what happens on the message consistency?)

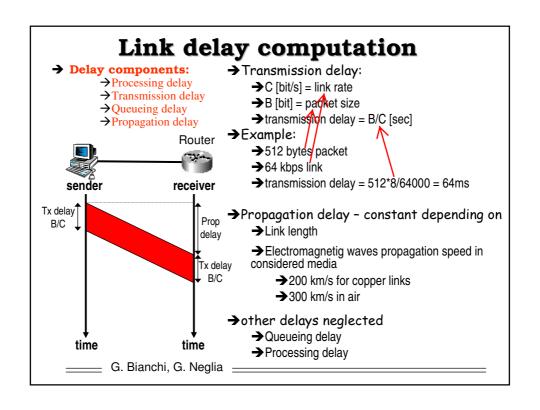
Message switching: higher reliability, lower complexity

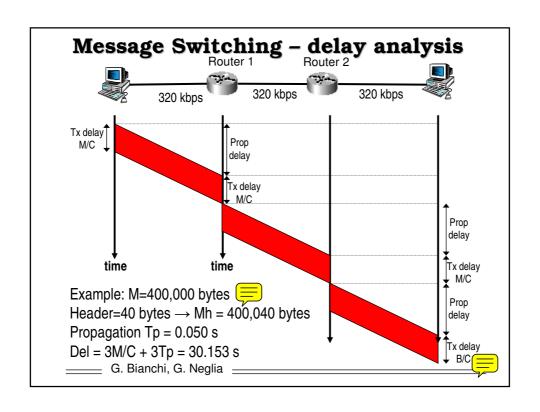
Message/packet Switching vs circuit switching

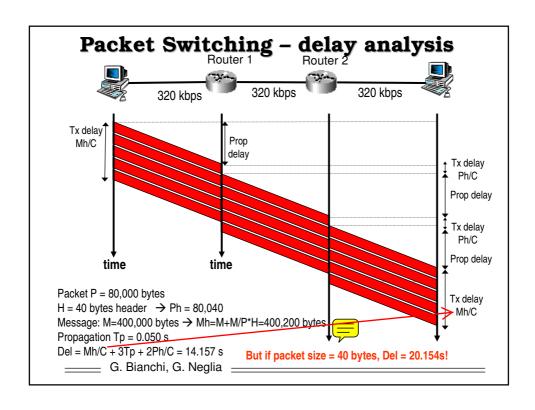
header mesg/pack

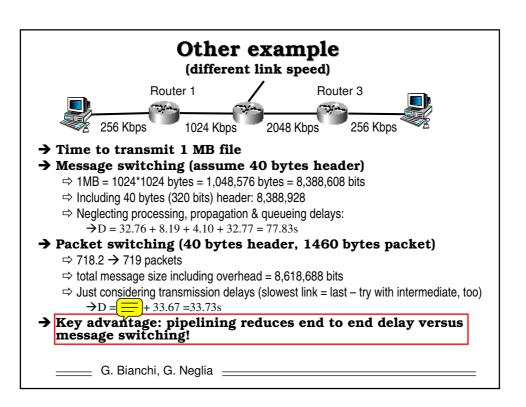
Router:

- reads header (destination address)
- selects output path

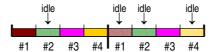

→ Advantages


- ⇒ Transmission resources used only when needed (data available)
- ⇒ No signalling needed


→ Disadvantages


- ⇒ Overhead
- ⇒ Inefficient routing fabrics (needs to select output per each packet)
- ⇒ Processing time at routers (routing table lookup)
- ⇒ Queueing at routers

G. Bianchi, G. Neglia 😑



Statistical Multiplexing the advantage of packet switching

Circuit switching: Each slot uniquely Assigned to a flow

Full capacity does not imply full utilization!!

Packet switching: Each packet grabs The first slot available

More flows than nominal capacity may be admitted!!

__ G. Bianchi, G. Neglia _____

Packet Switching overhead vs **burstiness**

Overhead for voice sources at 64 kbps =

Source rate: 64 kbps during 16 ms 128 voice samples = 1024 bit every 16 ms ← 62.5 packets/s

Assumption: 40 bytes header

emission rate = $62.5 \cdot (1024 + 40 \cdot 8) = 84000$

(versus 64000 nominal rate = 31.25% overhead)

On (activity) period

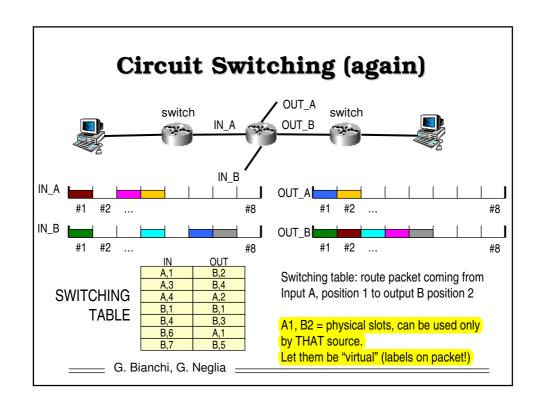
OFF period

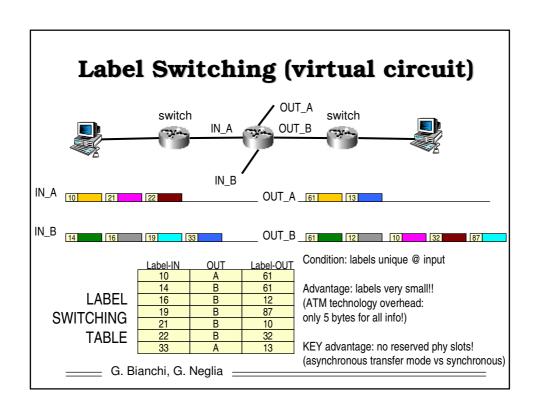
PACKETIZATION for voice sources (Brady model, activity=42.55%):

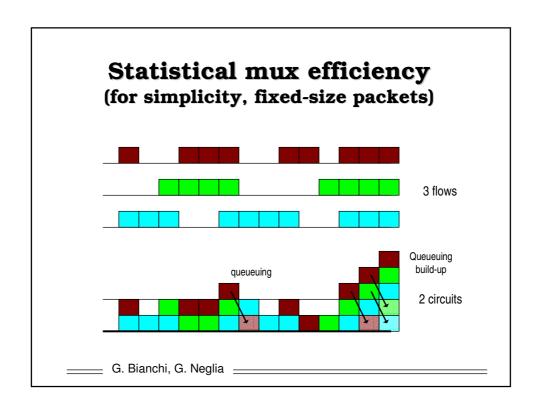
Assumptions: neglect last packet effect

average emission rate = $62.5 \cdot (1024 + 40 \cdot 8) \cdot 0.4255 = 35745$

(versus 64000 nominal rate = 55.85%) Overhead > lower than data rate


_ G. Bianchi, G. Neglia _____


Packet switching overhead


header packet

- → Header: contains lots of information
 - ⇒ Routing, protocol-specific info, etc
 - ⇒ Minimum: 28 bytes; in practice much more than 40 bytes → Overhead for every considered protocol: (for voice: 20 bytes IP, 8 bytes UDP, 12 bytes RTP)
- → Question: how to minimize header while maintaining packet switching?
- → Solution: label switching (virtual circuit)
 - \Rightarrow ATM
 - ⇒MPLS

____ G. Bianchi, G. Neglia 🕳

Statistical mux analysis → Very complex, when queueing considered □ Involves queueing theory □ Involves traffic time correlation statistics High corr

→Very easy, in the (worst case = conservative) assumption of unbuffered system

⇒In practice, burst size long with respect to buffer size

 \rightarrow Depends only on activity factor ρ

____ G. Bianchi, G. Neglia _

(SKIP from now)

Statistical mux analysis (i) unbuffered model

N traffic sources; Homogeneous, same activity factor ρ

Source rate = 1; Link capacity = C TDM: N <u>must</u> be <= C Packet: N may be > C

Prob(k sources simultaneously active) = $\binom{N}{k} \rho^k (1-\rho)^{N-k}$

Example: N=5; each having 20% activity

0	32.77%
1	40.96%
2	20.48%
3	5.12%
4	0.64%
5	0.03%

Average load = 5*0.2 = 1 But C=1 appears insufficient...

G. Bianchi, G. Neglia =

Low corr

Statistical mux analysis (ii) unbuffered model

- → Overflow probability
 - ⇒ Probability that, at a given instant of time (random), the link load is greater than the link capacity
 - ⇒ Implies packet loss if buffer=0

$$overflow_prob = \sum_{k=C+1}^{N} {N \choose k} \rho^{k} (1-\rho)^{N-k} =$$

$$= 1 - \sum_{k=0}^{C} {N \choose k} \rho^{k} (1-\rho)^{N-k}$$
| link of the second of the second

Example: N=5; each having 20% activity;

_____ G. Bianchi, G. Neglia ____

link capacity	overflow prob
0	67.23%
1	26.27%
2	5.79%
3	0.67%
4	0.03%
5	0.00%

Statistical mux analysis (iii) unbuffered model

→ Packet loss probability

Number of lost packets over number of offered packets

→ Offered packets

N * average number of offered packets per source = N * ρ

→ Lost packets:

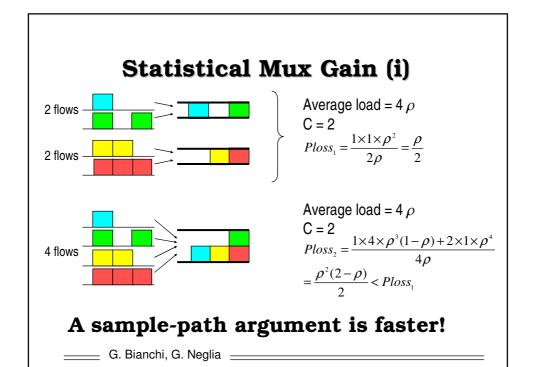
- ⇒ If k <= C active sources, no packet loss
 </p>
- \Rightarrow If k > C, k-C lost packets

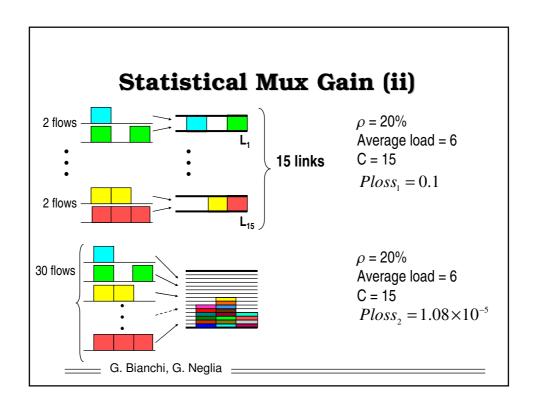
→ hence

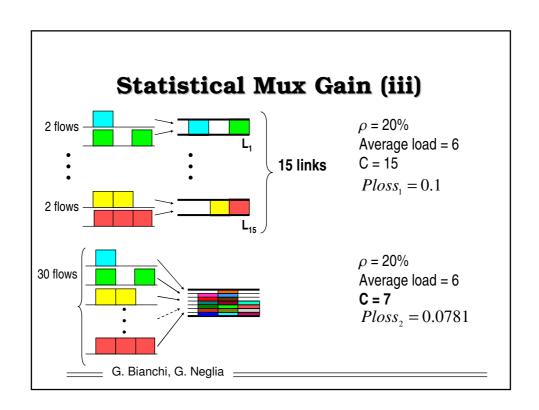
Example: N=5; each having 20% activity; N ρ = 1

k or C	p(k)	k*p(k)	overflow(C)	loss(C)
0	32.77%	0	67.23%	100.00%
1	40.96%	0.4096	26.27%	32.77%
2	20.48%	0.4096	5.79%	6.50%
3	5.12%	0.1536	0.67%	0.70%
4	0.64%	0.0256	0.03%	0.03%
5	0.03%	0.0016	0.00%	0.00%

ckets Ploss =	$\sum_{k=C+1}^{N} (k-C) \binom{N}{k} \rho^{k} (1-\rho)^{N-k}$
	$\sum_{k=C+1}^{N} k \binom{N}{k} \rho^{k} (1-\rho)^{N-k} - \frac{C}{N\rho} P(overflow)$
$N\rho^2$	$= \frac{1}{k} = C + 1 \frac{R}{R} \left(\frac{1}{k} \right)^{p} \left($


___ G. Bianchi, G. Neglia _____


•	Ĺ	/	0	S	S	V	'S	0	verflow


K or C	binom	p(K)	K ^ p(K)	overflow(C)	IOSS(C)			
0	1	1,2E-03	0,0E+00	9,99E-01	1,00E+00			
1	30	9,3E-03	9,3E-03	9,89E-01	8,34E-01			
2	435	3,4E-02	6,7E-02	9,56E-01	6,69E-01			
3	4060	7,9E-02	2,4E-01	8,77E-01	5,09E-01			
4	27405	1,3E-01	5,3E-01	7,45E-01	3,63E-01			
5	142506	1,7E-01	8,6E-01	5,72E-01	2,39E-01			
6	593775	1,8E-01	1,1E+00	3,93E-01	1,44E-01			
7	2035800	1,5E-01	1,1E+00	2,39E-01	7,81E-02			
8	5852925	1,1E-01	8,8E-01	1,29E-01	3,82E-02			
9	14307150	6,8E-02	6,1E-01	6,11E-02	1,68E-02			
10	30045015	3,5E-02	3,5E-01	2,56E-02	6,57E-03			
11	54627300	1,6E-02	1,8E-01	9,49E-03	2,30E-03			
12	86493225	6,4E-03	7,7E-02	3,11E-03	7,18E-04			
13	119759850	2,2E-03	2,9E-02	9,02E-04	2,00E-04			
14	145422675	6,7E-04	9,4E-03	2,31E-04	4,94E-05			
15	155117520	1,8E-04	2,7E-03	5,24E-05	1,08E-05			
16	145422675	4,2E-05	6,7E-04	1,05E-05	2,11E-06			
17	119759850	8,6E-06	1,5E-04	1,84E-06	3,62E-07			
18	86493225	1,6E-06	2,8E-05	2,84E-07	5,46E-08			
19	54627300	2,5E-07	4,7E-06	3,83E-08	7,21E-09			
20	30045015	3,4E-08	6,8E-07	4,48E-09	8,28E-10			
21	14307150	4,0E-09	8,5E-08	4,50E-10	8,20E-11			
22	5852925	4,1E-10	9,1E-09	3,86E-11	6,92E-12			
23	2035800	3,6E-11	8,2E-10	2,78E-12	4,91E-13			
24	593775	2,6E-12	6,3E-11	1,65E-13	2,88E-14			
25	142506	1,6E-13	3,9E-12	7,82E-15	1,35E-15			
26	27405	7,5E-15	2,0E-13	2,87E-16	4,91E-17			
27	4060	2,8E-16	7,5E-15	7,60E-18	1,29E-18			
28	435	7,5E-18	2,1E-16	1,30E-19	2,18E-20			
29	30	1,3E-19	3,7E-18	1,07E-21	1,79E-22			
30	1	1,1E-21	3,2E-20	0,00E+00	0,00E+00			
—— G. Bianchi, G. Neglia ———								

Example: N=30; each 20% activity; N ρ = 6

for C>>Np: Overflow=good approx for loss.

