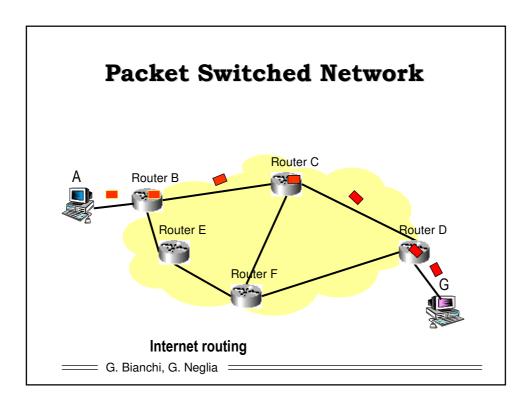
Lecture 8.

Internet Network Layer:

IP Fundamentals

— G. Bianchi, G. Neglia

Outline


- → Layer 3 functionalities
- →Internet Protocol (IP) characteristics
- →IP packet (first look)
- →IP addresses
- →Routing tables: how to use
- **→**ARP

Layer 3 functionalities

- →This layer handles the routing of the data: i.e. delivery data to the correct destination
- →Layer 3 functionalities are spread all over the network
 - ⇒in ad hoc apparatus (routers)
 - ⇒in your PC (as routing software)

= G. Bianchi, G. Neglia =

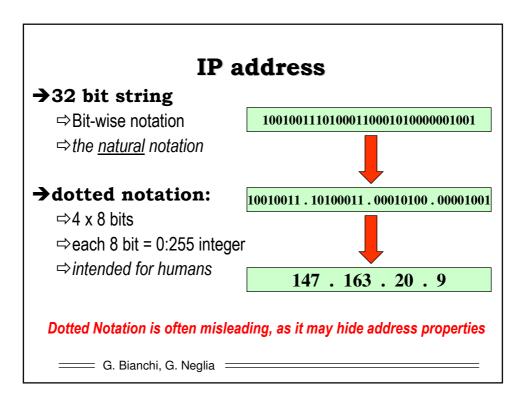
Circuit Switched Network G. Bianchi, G. Neglia

Internet Protocol (IP) RFC 791 (1981)

- **→**Connectionless
 - ⇒datagram delivery service
- **→**Best-effort
- **→**Unreliable
 - ⇒no guarantees of reception & packet order
 - ⇒error-handling algorithm: throw away packet!
 - →Upon buffer congestion
 - →Upon error check failed

IP functions in your PC

→in trasmission:


- ⇒ Encapsulates data from transport layer into datagrams
- ⇒ prepare header (src & dest addresses, etc)
- ⇒apply routing algorithm
- ⇒send datagram to network interface

→ in reception:

- ⇒check validity of incoming datagrams
- ⇒read header
- ⇒verify whether datagram is to be forwarded
- if datagram has reached destination, deliver payload to higher layer protocol

= G. Bianchi, G. Neglia =

IP datagram format 20 bytes header (minimum) 7 31 Version | Header | Type of Service | TOS **Total Length** 16 bit identification 13 bit fragment offset Time to Live **Protocol** Header checksum TTL 32 bit source IP address 32 bit destination IP address Options (if any) Padding (0s) Data (if any) = G. Bianchi, G. Neglia =

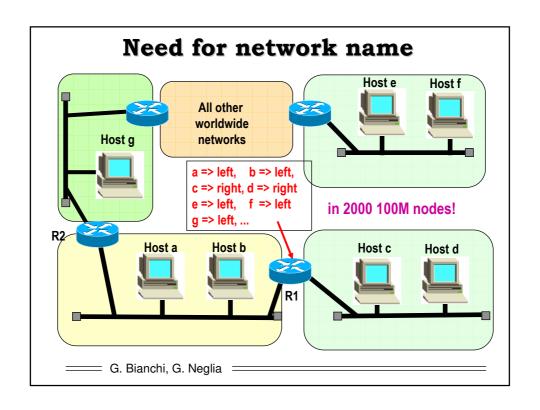
Notation conversion bin -> dotted

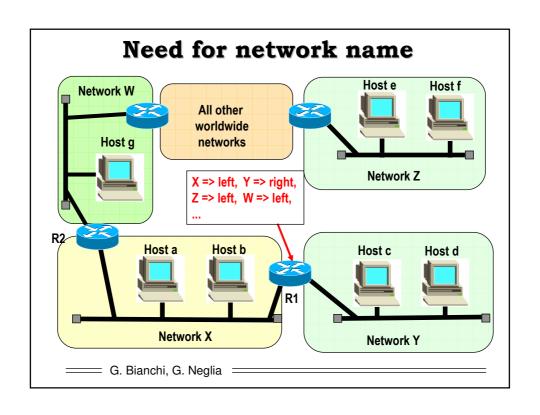
10010011.10100011.00010100.00001001

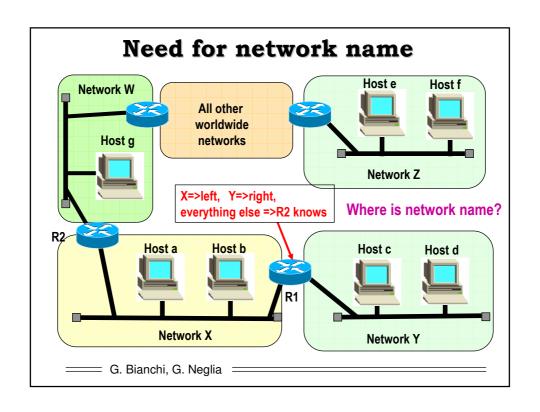
binary	128	64	32	16	8	4	2	1	decimal
10010011	1	0	0	1	0	0	1	1	128+16+2+1=147
10100011	1	0	1	0	0	0	1	1	128+32+2+1 = 163
00010100	0	0	0	1	0	1	0	0	16+4 = 20
00001001	0	0	0	0	1	0	0	1	8+1 = 9

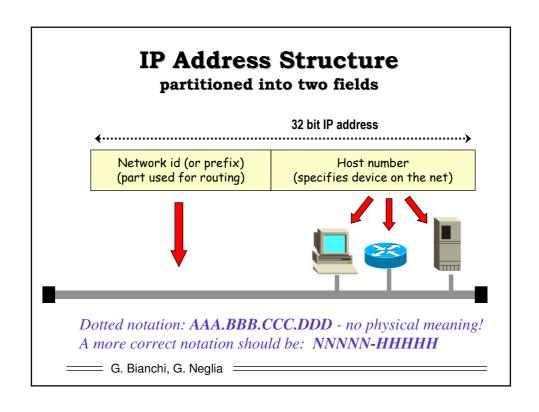
→ 147.163.20.9

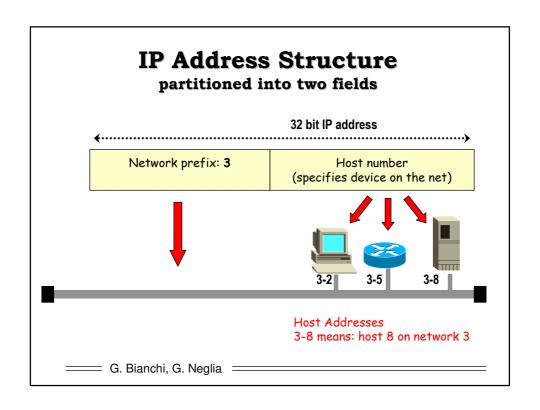
(www.diepa.unipa.it)


Notation conversion dotted -> bin


→ 131.175.21.1


(morgana.elet.polimi.it)


decimal	128	64	32	16	8	4	2	1	binary
131	1	0	0	0	0	0	1	1	128+2+1=10000011
175	1	0	1	0	1	1	1	1	128+32+8+4+2+1 = 10101111
21	0	0	0	1	0	1	0	1	16+4+1 = 00010101
1	0	0	0	0	0	0	0	1	1 = 00000001


10000011.10101111.00010101.00000001

Dotted notation vs IP address structure

→Dotted Notation

- ⇒AAA.BBB.CCC.DDD
 - →no physical meaning!
 - →often misleading!
 - it may hide address properties

→ More correct notation:

- ⇒NNNNN-HHHHH
 - → Physical meaning (network prefix, host #)
- ⇒Prefix size is variable,
- ⇒Not implicit in the IP address (from 1993)

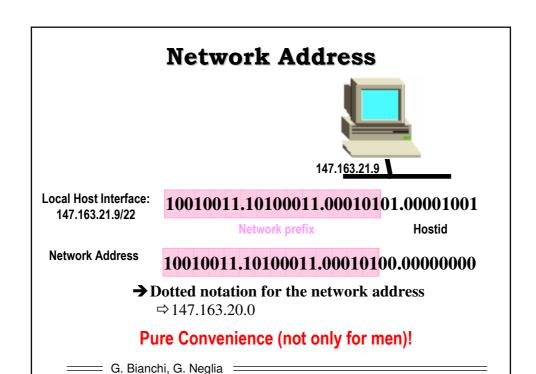
Separator must be provided externally

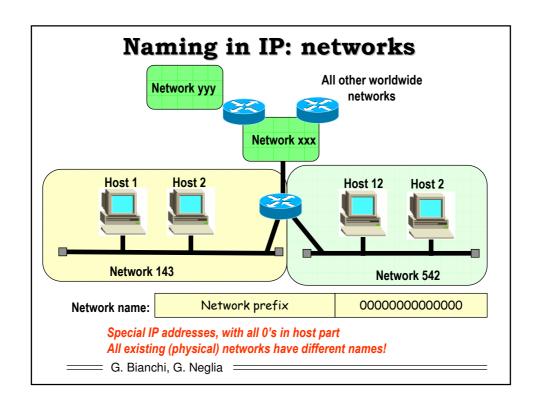
= G. Bianchi, G. Neglia

Example

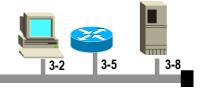
- →IP address 147.163.22.130
 - ⇒ Bitwise notation:

10010011.10100011.00010110.10000010


- → Network prefix:
 - ⇒ Externally provided
 - ⇒ Example: first 22 bits network ID, last 10 bits host ID


10010011.10100011.00010110.10000010

- ⇒ Network prefix notation:
 - →/22 (modern notation)
 - → Netmask (traditional notation)


11111111.111111111.11111100.00000000

→Netmask → dotted decimal: 255.255.252.0

Netid Hostid 3 0

Host Addresses

3-8 means: host 8 on network 3

Network address: 3-0

Host-id field set to 0 means this address

is a name for an entire network

(this is network 3, unique name in all the world)

- → Worldwide Unique Network address Assignment
- → Within a network, unique IP address assignment to each host (better: interface)

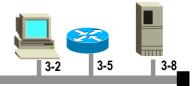
⇒CONCLUSION: ALL EXISTING HOSTS HAVE DIFFERENT IP ADDRESSES

— G. Bianchi, G. Neglia

Example

→ IP address 147.163.22.130

10010011.10100011.00010110.10000010


- → Network prefix:
 - ⇒ /22 (equivalently: 255.255.252.0)
- → It is an IP address for a HOST
 - ⇒ Simple: not all 0's in host part

10010011.10100011.00010110.10000010

- → Which belongs to network 147.163.20.0/22
 - ⇒ Simple: just set 0's in host part

10010011.10100011.00010100.00000000

Naming in IP: broadcast

Netaddr Hostid 3 All 1's

Means: all the hosts on the considered network! Used to send a "broadcast" information (to all the Attached hosts)

- → Example: network 147.163.20.0/22
 - ⇒ What is the IP address to use for broadcasting?
 - ⇒ Simple: just set all 1's in host part

10010011.10100011.00010111.11111111

→ Broadcast address: 147.163.23.255

— G. Bianchi, G. Neglia —

Test

→147.163.0.128 (prefix: /26)

⇒Network? Host? Broadcast?

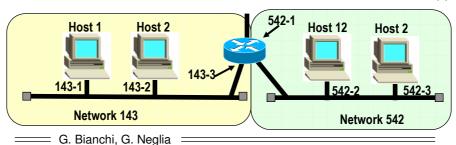
→147.163.0.128 (prefix: /24)

⇒Network? Host? Broadcast?

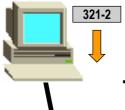
→147.163.14.3 (prefix: /30)

⇒Network? Host? Broadcast?

→174.163.20.255 (prefix: /22)


⇒Network? Host? Broadcast?

Think in binary! And everything becomes trivial....


Second role of an IP address: routing

Routing = ability to forward packets to destination

- → Routing: based on network addresses
 - Key idea: <u>first</u> find the physical network where the host resides, <u>and then</u> find specific host
 - ⇒ routing tables addressing each of 100M+ hosts would be unfeasible
- → A Router (2nd definition): computer with 2+ interfaces
 - Connects different networks (hence the name inter-net), eventually with different technologies
 - ⇒ An IP address per each interface
 - ⇒ Task: collect datagrams on one interface and forward on other(s)

Packet Routing (at local host)

Application running at local computer generates a datagram destined to IP address 321-2 [host 2 on network 321]

→ Local host operation:

- ⇒ Knows its IP address NNN-XXX
- ⇒ Thus knows on which network NNN the computer is attached
- ⇒ Hence, knows whether packet 321-2 needs to be forwarded to
 - ⇒A. an host on this same network
 - ⇒B. an host on a different network

Local host runs
IP routing SW
(some people thinks
Routing sw confined
At routers...)

NetAddress computation (Masking)

→ Is on the same network?

Local Host Interface:

147.163.21.9

10010011.10100011.00010101.00001001

Destination IPaddr: 147.163.22.130

10010011.10100011.00010110.10000010

Netaddresses are equal!

Д

They are on the same network!

How does IP software really work?

= G. Bianchi, G. Neglia =

NetAddress computation (Masking)

- **→** Network mask
 - ⇒associated to the network address
 - ⇒string of 1s in network address, 0s in host address

147.1<u>63.21.9</u>

Local Host Interface: 147.163.21.9

10010011.10100011.000101<mark>01.00001001</mark>

Netaddress

Hostid

Netmask

11111111.111111111.111111100.00000000

→ Dotted notation for the netmask

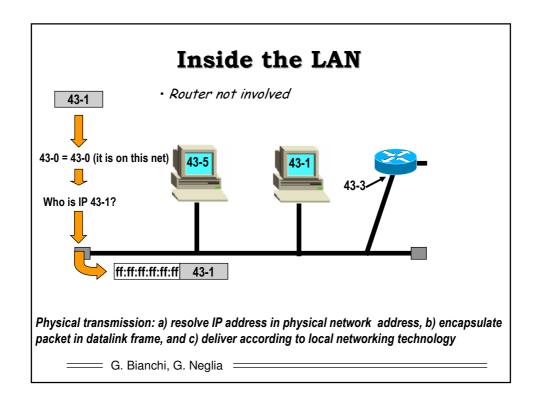
⇒ 255.255.252.0

NetAddress computation (Masking)

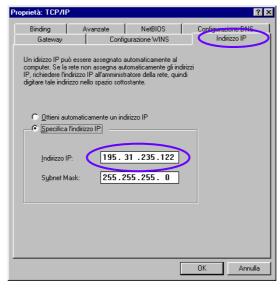
→ Is on the same network?

Destination IPaddr: 10010011.10100011.00010110.10000010 147.163.22.130

Bitwise AND


Netmask: 11111111.111111111.11111100.00000000 255.255.252.0

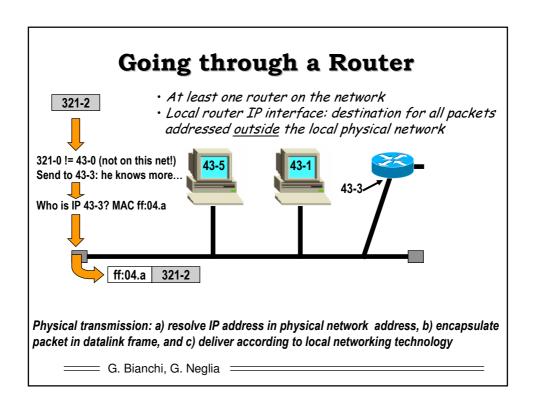
10010011.10100011.00010100.00000000

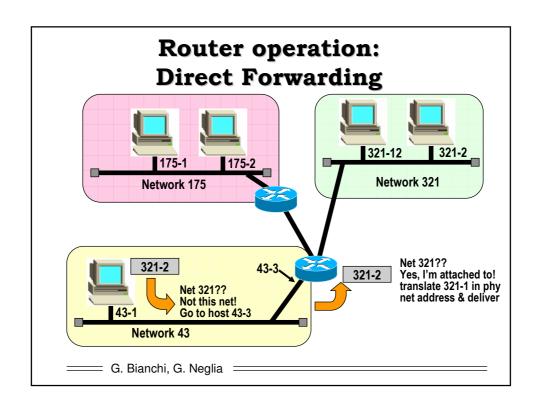

Network Address: 10010011.10100011.00010100.00000000

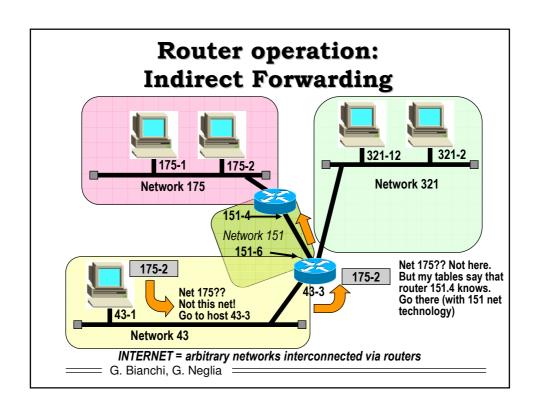
147.163.20.0

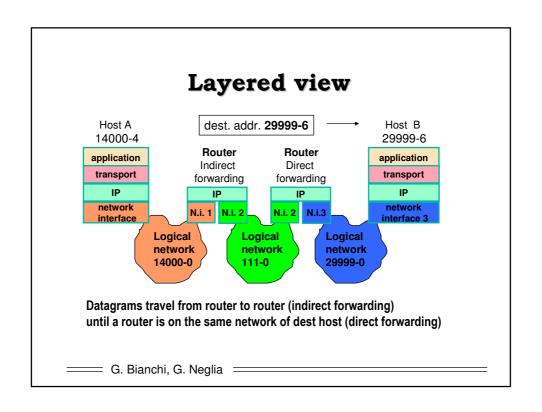
____ G. Bianchi, G. Neglia are on the same network!

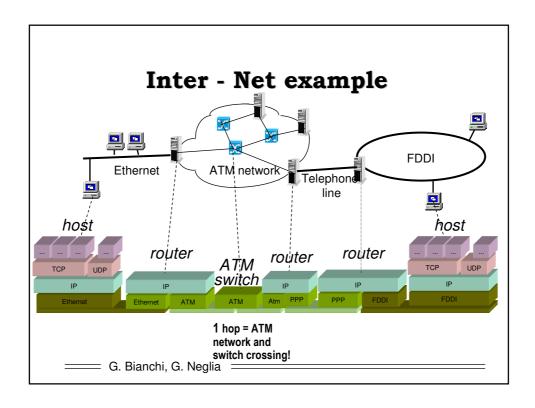
Host configuration (Windows)

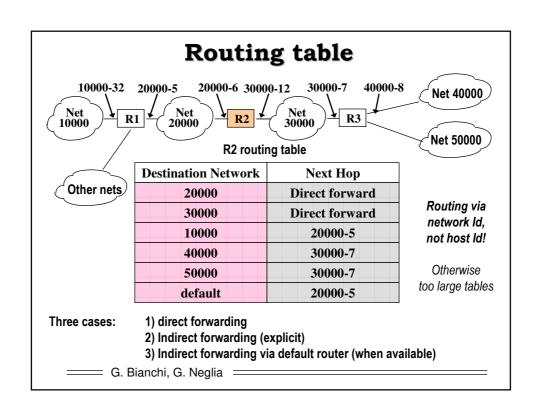

G. Bianchi, G. Neglia =

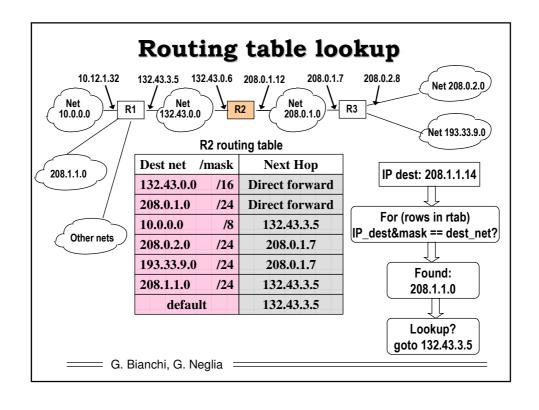

Possible netmask values "magic netmask numbers"


128	64	32	16	8	4	2	1_	
1	0	0	0	0	0	0	0	= 128
1	1	0	0	0	0	0	0	= 192
1	1	1	0	0	0	0	0	= 224
1	1	1	1	0	0	0	0	= 240
1	1	1	1	1	0	0	0	= 248
1	1	1	1	1	1	0	0	= 252
1	1	1	1	1	1	1	0	= 254
1	1	1	1	1	1	1	1	= 255


Examples: $/21 \rightarrow 255.255.248.0$


/29 → 255.255.255.248


Internet vs specific physical networking technology


→ IP: an overlay networking protocol

- ⇒ interconnection of widely heterogeneous networks
 - → seen by TCP/IP as sub networks
 - → Routers do not care about specific network technology (LAN, WAN, circuit switching, packet switching, ...)
 - →but they NEED to have a specific network interface (Routers with Ethernet interfaces cheap; with FDDI or ATM very expensive...)

→ Router duties:

- ⇒ just select destination (end or intermediate router)!
- ⇒ then map IPaddr in physical network address
- ⇒ IP datagrams tunneled into underlying network data units
- ⇒ specific physical network routing may be extremely complex (router sees this as single hop)

Route print (DOS,unix) shows routing table of your PC (remember: your PC is a simple IP router)

				======
Active Routes:				
Network Destination	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.163.57.1	10.163.57.77	1
10.163.57.0	255.255.255.0	10.163.57.77	10.163.57.77	1
10.163.57.77	255.255.255.255	127.0.0.1	127.0.0.1	1
10.255.255.255	255.255.255.255	10.163.57.77	10.163.57.77	1
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	224.0.0.0	10.163.57.77	10.163.57.77	1
255.255.255.255	255.255.255.255	10.163.57.77	10.163.57.77	1
Default Gateway:	10.163.57.1			

G. Bianchi, G. Neglia

Classful IP Addressing Originally (from 1981) a rigid two-level address structure 32 bit IP address 8,16 or 24 bits Network number Host number (network prefix) = G. Bianchi, G. Neglia =

Primary Address Classes 3 standardized classes

Class A - /8 network prefix

0 NET ID (7bit) HOST ID (24 bit)

Class B - /16 network prefix

1 0 NET ID (14bit) HOST ID (16 bit)

Class C - /24 network prefix

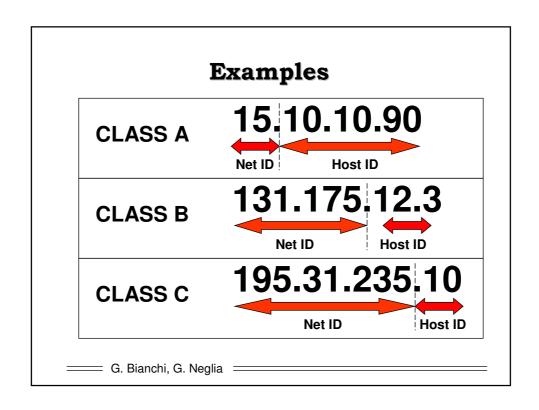
1 1 0 NET ID (21bit) HOST ID (8 bit)

/xx notation: modern notation in principle not necessary for classful IP addressing

G. Bianchi, G. Neglia

Additional classes

Class D: IP multicasting


1 1 1 0 Multicast Group ID (28 bit)

Class E: reserved for experimental use

1 1 1 1 reserved

Dotted Decimal Ranges

Address Class	Dotted Decimal ranges
Class A	1.xxx.xxx.xxx through 126.xxx.xxx.xxx
Class B	128.0.xxx.xxx through 191.255.xxx.xxx
Class C	192.0.0.xxx through 223.255.255.xxx
Class D (mcast)	224.xxx.xxx.xxx through 239.xxx.xxx.xxx
Class E (exper)	240.xxx.xxx.xxx through 255.xxx.xxx.xxx

Addressing networks

- →All Os host ID = reserved for network name.
- →Examples:

⇒CLASS A network: 13.0.0.0

⇒CLASS B network: 131.175.0.0

⇒CLASS C network: 193.32.43.0

→Test:

→188.66.32.0 = ???

 \rightarrow 122.0.0.0 = ???

=== G. Bianchi, G. Neglia ===

Special Addresses

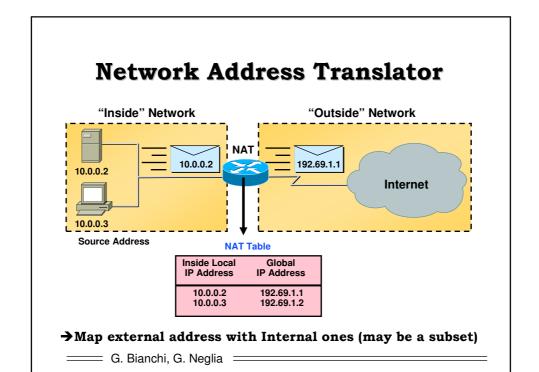
→all 1s host id: broadcast address (all hosts in the network)

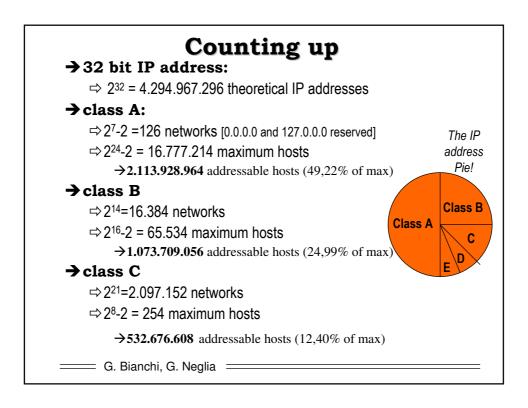
 \rightarrow es. 131.175.255.255 =all hosts attached to the 131.175 net

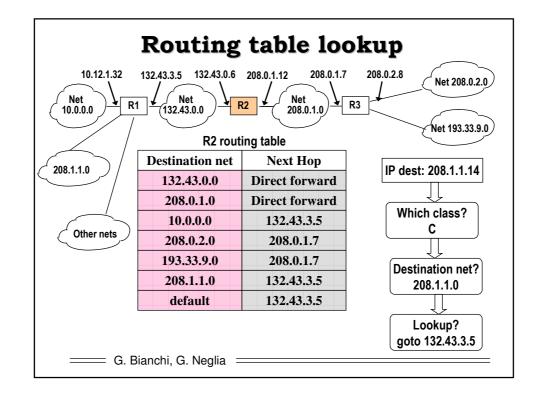
 \rightarrow 0.0.0.0 = THIS host on THIS network (0.x.x.x also reserved)

→e.g. to boot diskless WS (BOOTP)

→ 127.x.x.x used for loopback (es. 127.0.0.1=localhost)


→all 1s = 255.255.255.255 = limited broadcast
→all nodes on *THIS* local network


Address blocks for private Internets (RFC 1918)


IANA-Allocated, Non-Internet Routable, IP Address Schemes

Class	Network Address Range					
A	10.0.0.0 - 10.255.255.255					
В	172.16.0.0 - 172.31.255.255					
C	192.168.0.0 - 192.168.255.255					

To be used by private organizations not connected to the Internet No need to ask to IANA or InterNIC for these addresses. Use Network Address Translator (NAT) when external connectivity needed

Net Address computation (Masking)

→class mask:

⇒Depends on first bits of address (which specify class)

→Class A mask: 255.0.0.0 →Class B mask: 255.255.0.0 →Class C mask: 255.255.255.0

DEST IP address:

10011111 01100100 00001001 00010010

159.100.9.18 class B

Bitwise AND

Class B Mask: 255.255.0.0

1111111 11111111 00000000 00000000

Net address

10011111 01100100 00000000 00000000 159.100.0.0