Key Features Of a LAN

- High throughput
- Relatively low cost
- Limited to short distance
- Often rely on shared media
- No separate cable or Modem

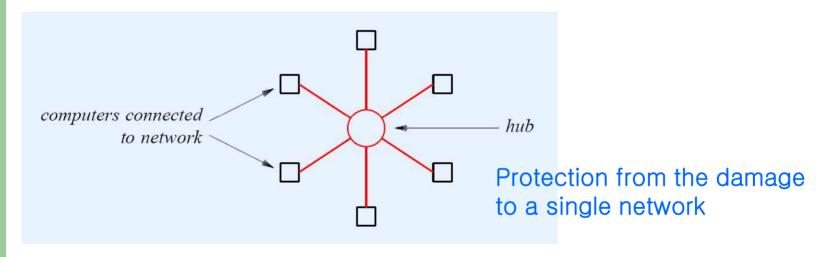
Point to point connection vs. Shared media LAN in the TEXT.

Scientific Justification For Local Area Networks

• A computer is more likely to communicate with computers that are nearby than with computers that are distant.

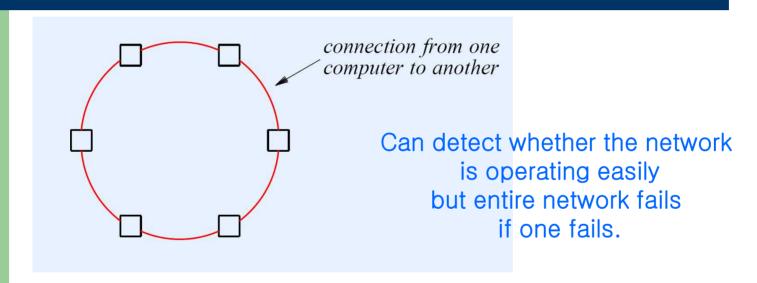
Known as the *locality principle*

→ Temporal locality of ref. (the same set of computer in time) + physical locality of reference (nearby computer)

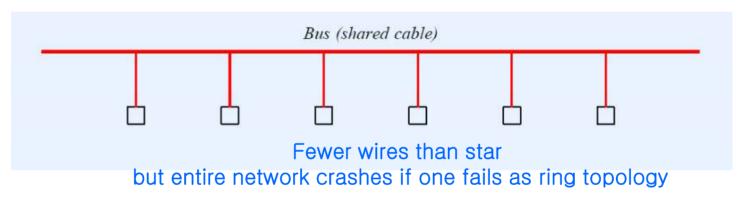

Topology

- Mathematical term
- Roughly interpreted as "geometry for curved surfaces"

Network Topology


- Specifies general "shape" of a network
- Handful of broad categories
- Often applied to LAN
- Primarily refers to interconnections
- Hides details of actual devices

Star Topology


- Central component of network known as hub
- Each computer has separate connection to hub

Ring Topology

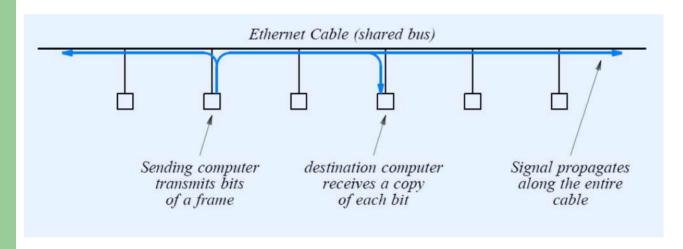
- No central facility
- Connections go directly from one computer to another → Logical (not physical) concept

Bus Topology

- Shared medium forms main interconnect
- Each computer has a connection to the medium
- Only one computer can send signals

Example Bus Network: Ethernet

- Most popular LAN
- Widely used


Ethernet segment (Coax cable) < 500m Connection distance min. 3m

- IEEE standard 802.3
- Several generations
 - Same frame format
 - Different data rates
 - Different wiring schemes

Shared Medium in a LAN

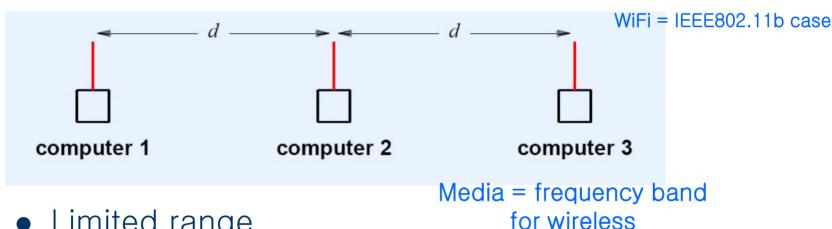
- Shared medium used for all transmissions
- Only one station transmits at any time
- Stations "take turns" using medium
- Media Access Control (MAC) policy ensures fairness

Illustration Of Ethernet Transmission

- Only one station transmits at any time (Time shared exclusive use of network)
- Signal propagates across entire cable
- All stations receive transmission
- CSMA/CD media access scheme
 Carrier Sense Multiple Access/Collision Detection

CSMA/CD Paradigm (not centralized)

- Multiple Access (MA)
 - Multiple computers attach to shared media
 - Each uses same access algorithm
- Carrier Sense (CS)
 - Wait until medium idle
 - Begin to transmit frame
- Simultaneous transmission possible
- CSMA
- → The presence of a signal to determine when to transmit signals


CSMA/CD Paradigm (continued)

- Two simultaneous transmissions
 - Interfere with one another
 - Called collision
- CSMA plus Collision Detection (CD)
 - Listen to medium during transmission
 - Detect whether another station's signal interferes
 - Back off from interference and try again

Back off After Collision

- When collision occurs
 - Wait random time t1, $0 \le t1 \le d$
 - Use CSMA and try again
- If second collision occurs
 - − Wait random time t2, 0 <= t2 <= 2d</p>
- Double range for each successive collision
- Called exponential back off

Media Access On A Wireless Net

- Limited range
 - Not all stations receive all transmissions.
 - Cannot use CSMA/CD
- Example in diagram
 - Maximum transmission distance is d
 - Stations 1 and 3 do not receive each other's transmissions

CSMA/CA (Carrier Avoidance)

- Used on wireless LANs
- Both sides send small message followed by data transmission If collision occurs in the procedure,
 - "X is about to send to Y"
 - "Y is about to receive from X" This informs farthest

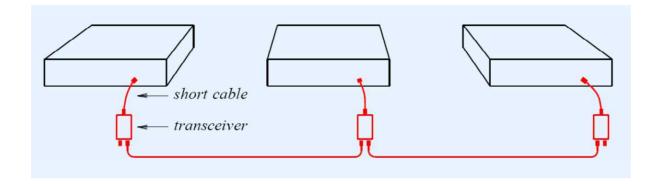
back off solves the situation.

computer.

- Data frame sent from X to Y
- Purpose: inform all stations in range of X or Y before transmission
- Known as Collision Avoidance (CA)

Wi-Fi Wireless LAN Technology

- Popular
- Uses CSMA/CA for media access
- Standards set by IEEE
 - 802.11b (11 Mbps, shared channel)
 - 802.11a (54 Mbps, shared channel)
- Named Wi-Fi by consortium of vendors (to enhance popular appeal)


Another LAN Using Bus Topology

(Example)

(Relocated Compared to Original Slide)

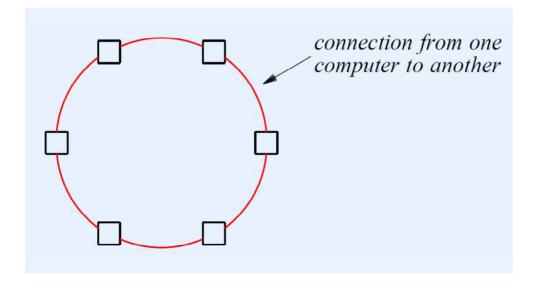
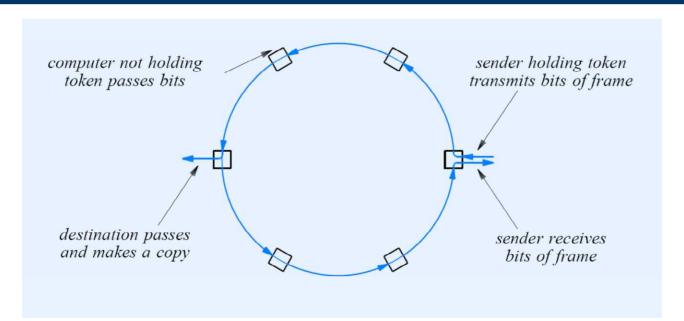

- LocalTalk
 - Developed by Apple Corp.
 - Simple to use
 - Slow by current standards

Illustration Of Local Talk

- Transceiver required per station
- Transceiver terminates cable

Ring Topology

- Once a popular topology for LANs
- Bits flow in single direction


Token Passing

- Designed for ring topology
- Guarantees fair access
- Token
 - Special (reserved) message
 - Small (a few bits)

Token Passing Paradigm

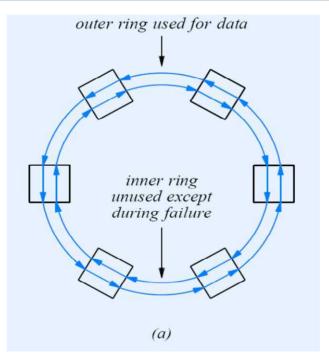
- Station
 - Waits for token to arrive
 - Transmits one packet around ring
 - Transmits token around ring
- When no station has data to send
 - Token circulates continuously

Token Passing Ring Transmission

- Station waits for token before sending
- Signal travels around entire ring
- Sender <u>receives</u> its own transmission

Strengths Of Token Ring Approach

- Easy detection of
 - Broken ring
 - Hardware failures
 - Interference


Weaknesses Of Token Ring Approach

- Broken wire disables entire ring
- Point-to-point wiring
 - Awkward in office environment
 - Difficult to add/move stations

Failure Recovery In Ring Networks

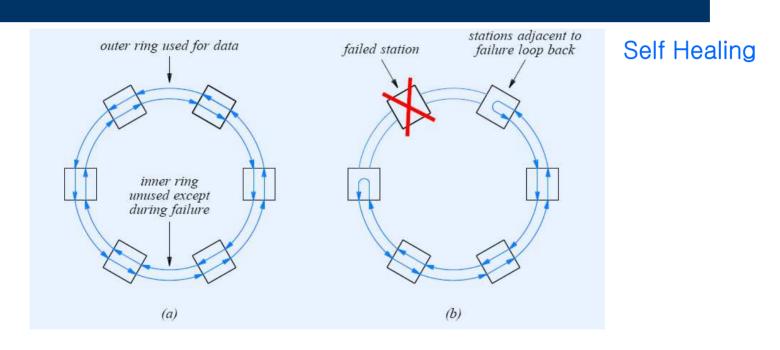
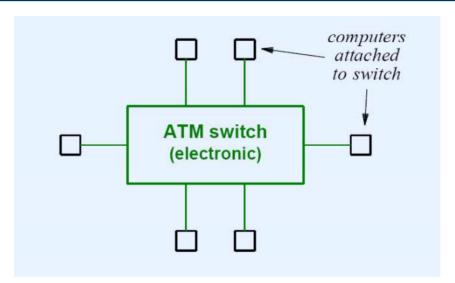

- Automatic failure recovery
- Introduced by FDDI (Fiber Distributed Data Interconnect)
- Uses two rings
- Terminology
 - Dual-attached
 - Counter rotating
 - Self healing

Illustration Of Failure Recovery

Normal operation uses one of two rings

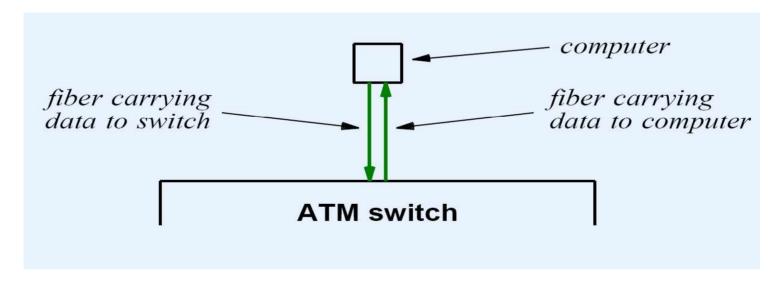
Illustration Of Failure Recovery

- Normal operation uses one of two rings
- Second ring used for loopback during failure


Token Passing Ring Technologies

- ProNet-10
 - Operated at 10 Mbps
- IBM Token Ring
 - Originally operated at 4 Mbps
 - Later version operated at 16 Mbps
- Fiber Distributed Data Interconnect (FDDI)
 - Operates at 100 Mbps
- All are now virtually obsolete

Example of a physical Star Topology


- Asynchronous Transfer Mode (ATM)
- Designed by telephone companies
- Intended to accommodate
 - Voice
 - Video
 - Data

ATM

- Building block known as ATM switch
- Each station connects to switch
- Switches can be interconnected

Details Of ATM Connection

- Full-duplex connections
- Two fibers used

ATM Characteristics

- High data rates (e.g. 155 Mbps)
- Fixed size packets
 - Called cells
 - Important for voice
- Cell size is 53 octets
 - 48 octets of data
 - 5 octets of header

Identifying a Destination

- All stations on shared-media LAN receive all transmissions
- To allow sender to specify destination
 - Each station assigned unique numbers(physical address = hardware address = MAC address)
 - Known as station's address
 - Each frame contains address of intended recipient

Ethernet Addressing

- Standardized by IEEE
- Each station assigned unique 48-bit address
- Address assigned when network interface card (N/C) manufactured

Ethernet Address Recognition

- Each frame contains destination address (also source address for reply)
- All stations receive a transmission
- Station discards any frame addressed to another station
- Important: interface hardware (independent from processor), not software, checks address
 - → basically compares the destination address with own MAC address (+ frame length check, CRC) Discard the frames with errors)

Format of a Physical Address

Static,
Configurable (during installation),
Dynamic address (during booting)
in the Text (pp.126)

Possible Destinations

- Packet can be sent to:
 - Single destination (unicast)
 - All stations on network (broadcast)
 - Subset of stations (multicast)
- Address used to distinguish

Advantages Of Address Alternatives

- Unicast
 - Efficient for interaction between two computers
- Broadcast
 - Efficient for transmitting to all computers
- Multicast
 - Efficient for transmitting to a subset of computers

Broadcast On Ethernet

- All 1s address specifies broadcast
- Sender
 - Places broadcast address in frame
 - Transmits one copy on shared network
 - All stations receive copy
- Receiver always accepts frame that contains
 - Station's unicast address
 - The broadcast (multicast) address

Multicast On Ethernet

- Half of addresses reserved for multicast
- Network interface card
 - Always accepts unicast and broadcast
 - Can accept zero or more multicast addresses
- Software (Application Program)
 - Determines multicast address to accept (after boot, only computer's address and broadcast address are recognized.)
 - Informs network interface card by software

Promiscuous Mode

- Designed for testing/debugging
- Allows interface to accept all packets
- Available on most interface hardware

Identifying Frame Contents

- Integer type field tells recipient the type of data being carried
- Two possibilities
 - Self-identifying or explicit type (hardware records frame type field in a frame)
 - Implicit type (application program must handle type implicitly)

Conceptual Frame Format

Frame Data Area
Header or Payload

- Header
 - Contains address and type information
 - Layout fixed
- Payload
 - Contains data being sent

Illustration Of Ethernet Frame

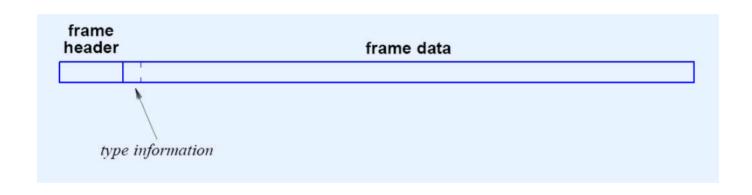
Preamble	Dest. Address	Source Address		Data In Frame	CRO
8	6	6	2	46 - 1500	4
	- T	leader —		——————————————————————————————————————	

Preamble: series of alternating 1's and 0's for sync.

- Sender places
 - Sender's address in source
 - Recipient's address in destination
 - Type of data in *frame type*
 - Cyclic redundancy check in CRC

Example Ethernet Types (Frame Type) (2 bytes - 4 HEX number)

Value	Meaning	All 1's in 48 bit: Broadcast				
0000-05DC	Reserved for use with IEEE LLC/SNAP	Other addresses starting with 1: Multicast				
0800	Internet IP Version 4					
0805	CCITT X.25					
0900	Ungermann-Bass Corporation network debugger					
0BAD	Banyan Systems Corporation VINES					
1000-100F	Berkeley UNIX Trailer encapsulation					
6004	Digital Equipment Corporation LAT					
6559	Frame Relay					
8005	Hewlett Packard Corporation network probe					
8008	AT&T Corporation					
8014	Silicon Graphics Corporation network games					
8035	Internet Reverse ARP					
8038	Digital Equipment Corporation LANBridge					
805C	Stanford University V Kernel					
809B	Apple Computer Corporation AppleTalk					
80C4-80C5	Banyan Systems Corporation					
80D5	IBM Corporation SNA					
80FF-8103	Wellfleet Communications					
8137-8138	Novell Corporation IPX					
818D	Motorola Corporation					


FFFF

Reserved

When Network Hardware Does Not Include Types

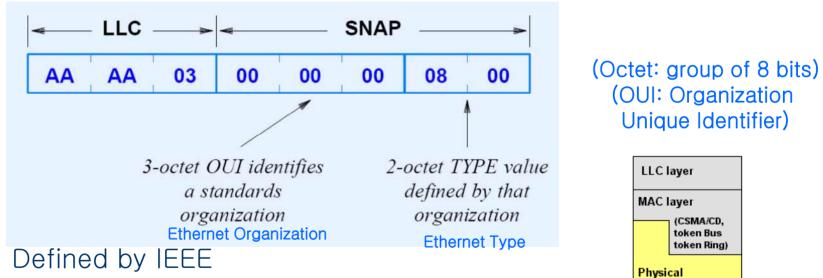

- Sending and receiving computers must agree
 - To only send one type of data
 - To put type information in first few octets of payload
- Most systems need type information

Illustration Of Type Information Added To Data

- In practice
 - Type information small compared to data carried
 - Format of type information standardized

A Standard For Type Information

Used when hardware does not include type field

Called {LLC (Logical Link Control) -> Common Interface to MAC ← Data Link Layer /SNAP (Subnetwork Attachment Point) } header

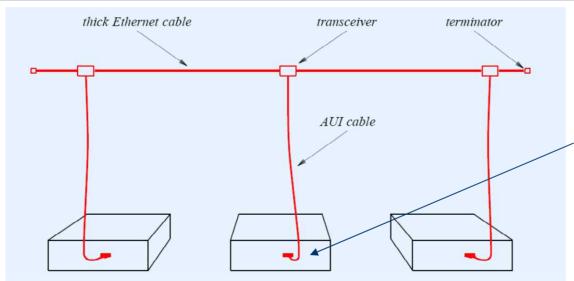
IEEE 802

Demultiplexing On Type

- Network interface hardware
 - Receives copy of each transmitted frame
 - Examines address and either discards or accepts
 - Passes accepted frame to system software
- Network device software
 - Examines frame type
 - Passes frame to correct software module

Network Analyzer (Packet Analyzer)

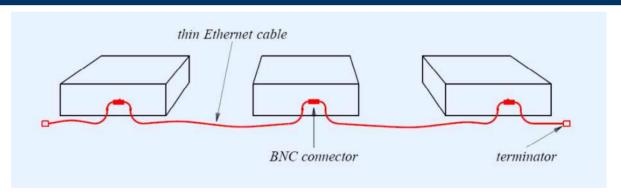
- Device used for testing and maintenance
- Listens in promiscuous mode
- Produces
 - Summaries (e.g., % of broadcast frames)
 - Specific items (e.g., frames from a given address)
 - Avg. frame size, Avg. # of frames/sec., # of collisions


Ethernet Wiring

- Three schemes
 - Correspond to three generations
 - All use same frame format

Network Interface Card (NIC)

- Handles the speed gap btw. Processor and Network (more demanding)
- DMA, Interrupt based, I/O like mechanism
- Processor allows buffer area solely for NIC
- NIC copies the frame, verify checksum and check destination address is correct (including broadcast and multicast)
 - → interrupt processor (How to mitigate the speed gap btw. Comp. & Network)

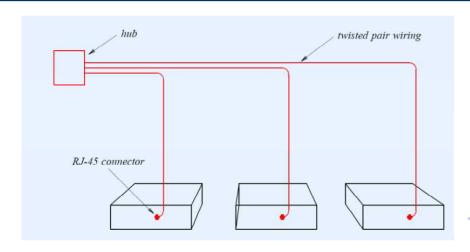

Original Ethernet Wiring

AUI: Attachment Unit Interface

- Used heavy coaxial cable
- Formal name 10Base5
- Called thicknet

Second Generation Ethernet Wiring

- Used thinner coaxial cable
- Formal name 10Base2
- Called thinnet


(Transceiver + NIC in 10Base5 → NIC)

Terminator:

(To get rid of reflection, affects exponential back off collision detection)

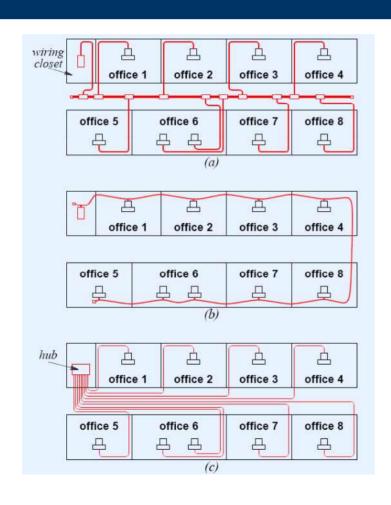
Modern Ethernet Wiring

Pin#	Ethernet 10BASE-T 100BASE-TX	EIA/TIA 568A	EIA/TIA 568B or AT&T 258A
1	Transmit +	VVhite with green strip	White with orange stripe
2	Transmit -	Green with white stripe or solid green	Orange with white stripe or solid orange
3	Receive +	White with orange stripe	White with green stripe
4	N/A	Blue with white stripe or solid blue	Blue with white stripe or solid blue
5	N/A	VVhite with blue stripe	White with blue stripe
6	Receive -	Orange with white stripe or solid orange	Green with white stripe or solid
7	N/A	White with brown strip or solid brown	White with brown strip or solid brown
8	N/A	Brown with white stripe or solid brown.	Brown with white stripe or solid brown.

(Registered Jack-45) A telephone connector that holds up to eight wires. RJ-45 plugs and sockets are used in Ethernet and Token Ring Type 3 devices, See RJ-48.

From Computer Desktop Encyclopedia @ 2001 The Computer Language Co. Inc

RJ-45 Connectors Eight-wire RJ-45 connectors are used with Ethernet and Type 3 Token Ring networks.


- Uses a hub
- Formal name 10Base-T
- Called twisted pair Ethernet

Variations of RJ-45

These are the variations of RJ-45 pins and wire colors.

Ethernet Wiring In An Office

Thick Ethernet

Thin Ethernet

Twisted pair Ethernet (Basically star topology)

A Note About Ethernet Topology

- Apparently
 - Original Ethernet used bus topology
 - Modern Ethernet uses star topology
- In fact, modern Ethernet is
 - Physical star
 - Logical bus

They are using star topology HUB.

- Called star-shaped bus

Higher Speed Ethernets

- Fast Ethernet
 - Operates at 100 Mbps
 - Formally 100Base-T
 - Two wiring standards
 →Auto-negotiation between NIC to check both are capable of 100Base-T
 - 10/100 Ethernet devices available
- Gigabit Ethernet
 - Operates at 1000 Mbps (1 Gbps)
 - Slightly more expensive