SKIP Until pp.15

Resolving Addresses

- Hardware only recognizes MAC addresses
- IP only uses IP addresses
- Consequence: software needed to perform translation
 - Part of network interface
 - Known as address resolution

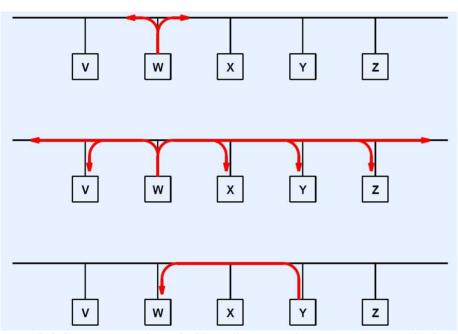
Address Resolution

- Layer 2 protocol
- Given
 - A locally-connected network, N
 - IP address C of computer on N
- Find
 - Hardware address for C
- Technique
 - Address Resolution Protocol

Address Resolution Protocol (ARP)

- Keep bindings in table
- Table entry contains pair of addresses for one computer
 - IP address
 - Hardware address
- Build table automatically as needed

ARP Table


IP Address	Hardware Address
197.15.3.2	0A:07:4B:12:82:36
197.15.3.3	0A:9C:28:71:32:8D
197.15.3.4	0A:11:C3:68:01:99
197.15.3.5	0A:74:59:32:CC:1F
197.15.3.6	0A:04:BC:00:03:28
197.15.3.7	0A:77:81:0E:52:FA

- Only contains entries for computers on local network
- IP network prefix in all entries identical

ARP Lookup Algorithm

- Look for target IP address, T, in ARP table
- If not found
 - Send ARP request message to T
 - Receive reply with T's hardware address
 - Add entry to table
- Return hardware address from table

Illustration Of ARP Exchange

- W needs Y's hardware address
- Request sent via broadcast
- Reply sent via unicast

ARP Message Format (For Ethernet)

0		8	16	24	31	
HARDWARE ADDRESS TYPE		PROTOCOL ADDRESS TYPE		E		
H	HADDR LEN PADDR LEN			OPERATION		
SENDER HADDR (first 4 octets)						
SENDER HADDR (last 2 octets)			SENDER PADDR (first 2 octets)			
;	SENDER PADDR (last 2 octets)			T HADDR (first 2 octe	ts)	
TARGET HADDR (last 4 octets)						
	TARGET PADDR (all 4 octets)					

- Length of hardware address fields depend on network type
- Ethernet uses 48-bit addresses

Transmission Of ARP Message In A Frame

- ARP message sent in payload area of frame
- Called encapsulation

Frame Type

Dest.	Source	Frame	Data In Frame
Address	Address	Type	
		806	complete ARP message

- Frame type identifies message as ARP
- Receiver examines frame type

Important Note

Because ARP software is part of the network interface software, <u>all higher–layer protocols and applications can use IP addresses exclusively, and remain completely unaware of hardware addresses.</u>

Summary

- Internetworking
 - Solves problem of heterogeneity
 - Includes LANs and WANs
- Internet concept
 - Virtual network
 - Seamless
 - Universal

- Internet architecture
 - Multiple networks
 - Interconnected by routers
- Router
 - Special-purpose computer system
 - Interconnects two or more networks
 - Uses table to forward datagrams

- Internet Protocol (IP)
 - Fundamental piece of TCP/IP
 - Defines
 - * Internet addressing
 - * Delivery semantics
 - * Internet packet format (IP datagram)

- Address resolution
 - Needed to map IP address to equivalent hardware address
 - Part of network interface
 - Uses table
 - Automatically updates table entries
 - Broadcasts requests

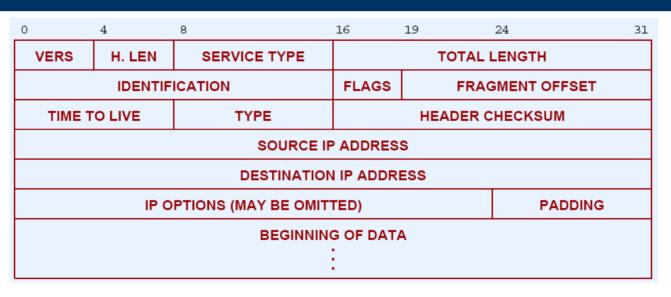
PART XI

Part 2
(Datagram Encapsulation,
Transmission, Fragmentation,
Reassembly)

Motivation For IP Packets

Because it can connect heterogeneous networks, a router cannot transmit a copy of a frame that arrives on one network across another. To accommodate heterogeneity, an internet must define a hardware-independent packet format.

Internet Packets


- Abstraction
- Created and understood only by software
- Contains sender and destination addresses
- Size depends on data being carried
- Called IP datagram

The Two Parts Of An IP Datagram

Header Data Area

- Header
 - Contains destination address
 - Fixed-size fields
- Payload
 - Variable size up to 64K
 - No minimum size

Datagram Header

- Three key fields
 - Source IP address
 - Destination IP address
 - Type (contents)

IP Datagram Forwarding

- Performed by routers
- Similar to WAN forwarding
 - Table-driven
 - Entry specifies next hop
- Unlike WAN forwarding
 - Uses IP addresses
 - Next-hop is router or destination

Example Of An IP Routing Table

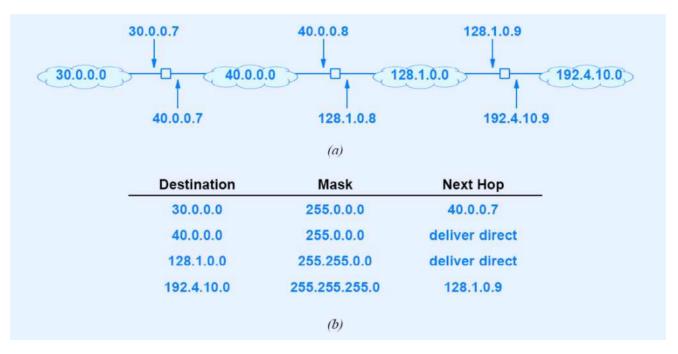


Table (b) is for center router in part (a)

Routing Table Size

Because each destination in a routing table corresponds to a network, the number of entries in a routing table is proportional to the number of networks in an internet.

Datagram Forwarding

- Given a datagram
- Extract destination address field, D
- Look up D in routing table
- Find next-hop address, N
- Send datagram to N

Key Concept

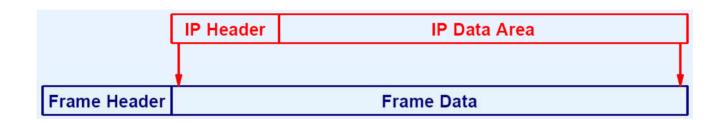
The destination address in a datagram header always refers to the ultimate destination. When a router forwards the datagram to another router, the address of the next hop does not appear in the datagram header.

IP Semantics

- IP is connectionless
 - Datagram contains identity of destination
 - Each datagram sent/handled independently
- Routes can change at any time

IP Semantics (continued)

- IP allows datagrams to be
 - Delayed
 - Duplicated
 - Delivered out of order
 - Lost
- Called best effort delivery
- Motivation: accommodate all possible networks


Internet Transmission Paradigm (General Case)

- Source host
 - Forms datagram
 - Includes destination address
 - Sends to nearest router
- Intermediate routers
 - Forward datagram to next router
- Final router
 - Delivers to destination host

Datagram Transmission

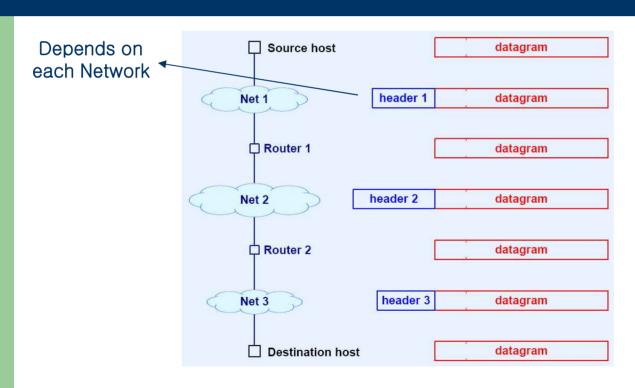
- Datagram sent across conventional network
 - From source host and router
 - Between intermediate routers
 - From final router to destination host
- Network hardware does not recognize
 - Datagram format
 - IP addresses
- Encapsulation needed

Illustration Of IP Encapsulation

- Entire datagram treated like data
- Frame type identifies contents as IP datagram
- Frame destination address gives next hop

Frame And Datagram Destination Addresses

- Frame address
 - Hardware (MAC) address
 - Next hop
- Datagram address
 - IP address
 - Ultimate destination

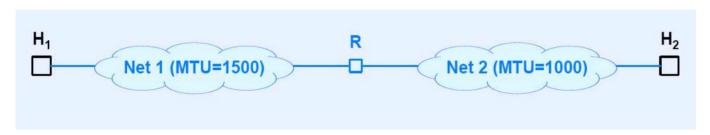

Frame Address For Encapsulated Datagram

A datagram is encapsulated in a frame for transmission across a physical network. The destination address in the frame is the address of the next hop to which the datagram should be sent; the address is obtained by translating the IP address of the next hop to an equivalent hardware address.

Frames And Datagrams

- Datagram survives entire trip across Internet
- Frame only survives one hop

Illustration Of Frame Headers Used For Datagram Transmission

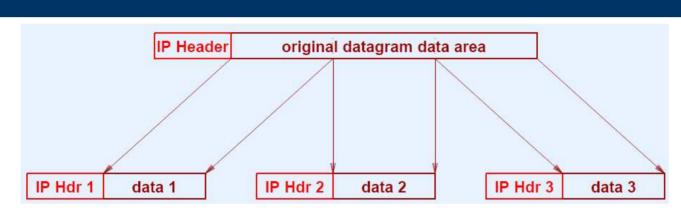

 Each hop extracts datagram and discards frame

Skip from here

Maximum Frame Size

- Each network technology imposes maximum frame size
 - Called Maximum Transmission Unit (MTU)
 - MTUs differ
- Internet
 - Can contain heterogeneous technologies
 - Must accommodate multiple MTUs

Illustration Of How Two MTUs Cause A Problem For IP



- Host 1
 - Creates datagram for Host 2
 - Chooses datagram size of 1500 octets
 - Transmits datagram across network 1
- Router R
 - Receives datagram over network 1
 - Must send datagram over network 2
 - Employs fragmentation

Datagram Fragmentation

- Performed by routers
- Needed when datagram larger than MTU of network
- Divides datagram into pieces called fragments
- Each fragment has datagram header
- Fragments sent separately
- Ultimate destination reassembles fragments

Illustration Of Datagram Fragmentation

- Each fragment has IP datagram header
- Header fields
 - Identify original datagram
 - Indicate where fragment fits

Example Of Reassembly

- Host H₁ generates 1500-octet datagram
- Router R₁ fragments
- Router R₂ transmits fragments
- Host H₂ reassembles

Multiple Fragmenting Points

- Let MTUs along internet path be
 - -1500
 - -1500
 - -1000
 - -1500
 - -576
 - -1500
- Result: fragmentation can occur twice

Fragmenting A Fragment

- Needed when fragment too large for network MTU
- Arbitrary subfragmentation possible
- Router divides fragments into smaller pieces
- All fragments at same "level"
 - Offset given with respect to original datagram
 - Destination cannot distinguish subfragments

Fragment Loss

- Receiver
 - Collects incoming fragments
 - Reassembles when all fragments arrive
 - Does not know identity of router that did fragmentation
 - Cannot request missing pieces
- Consequence: Loss of one fragment means entire datagram lost

Summary

- Internet transmission paradigm
 - Source host
 - Zero or more routers
 - Destination host
- Datagram encapsulated in network frame for transmission

- Network hardware has maximum payload size
 - Called MTU
 - Datagram must be smaller than hardware MTU
- Internet can have multiple MTUs

- Datagram fragmentation
 - Accommodates multiple MTUs
 - Performed by router
 - Divides datagram into pieces
 - Ultimate destination reassembles

- Fragments can be fragmented
 - Multiple levels possible
 - All offsets at one level
 - Loss of any fragment means loss of entire datagram