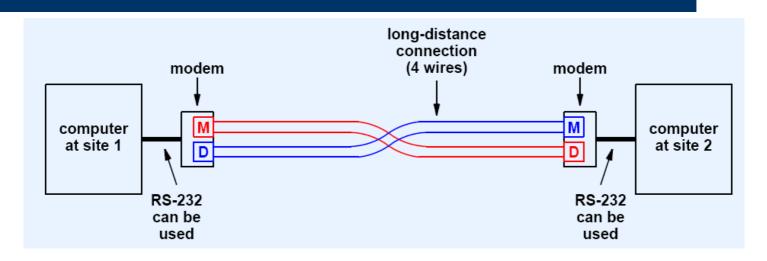

Phase-Shift Example


- Section of wave is omitted at phase shift
- Data bits determine size of omitted section

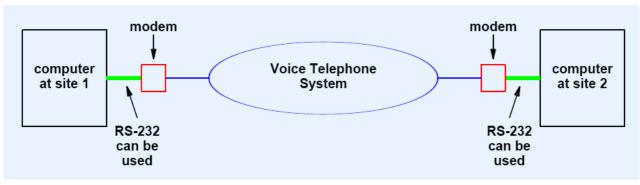
Modem

- Hardware device
- Used for long-distance communication
- Contains separate circuitry for
 - Modulation of outgoing signal
 - Demodulation of incoming signal
- Name abbreviates modulator/demodulator

Illustration Of Modems Used Over A Long Distance

- One modem at each end
- Separate wires carry signals in each direction
- Modulator on one modem connects to demodulator on other

Types Of Modems


- Conventional
 - Use four wires
 - Transmit modulated electrical wave
- Optical
 - Use glass fibers
 - Transmit modulated light
- Wireless
 - Use air/space
 - Transmit modulated RF wave

Types Of Modems (continued)

- Dialup
 - Use voice telephone system
 - Transmit modulated audio tone

 Note: in practice, a dialup modem uses multiple tones simultaneously

Illustration Of Dialup Modem

- Modem can
 - Dial
 - Answer
- Carrier is audio tone

Modem Terminology

- Full-duplex modem
 - Provides 2-way communication
 - Allows simultaneous transmission
 - Uses four wires
- Half-duplex modem
 - Provides 2-way communication
 - Transmits in one direction at any time
 - Uses two wires

Recall

- Propagation delay
 - Determined by physics
 - Time required for signal to travel across medium
- Bandwidth
 - Electrical property of physical transmission system
 - Maximum times per second signal can change

Fundamental Measures Of A Digital Transmission System

Delay

- The amount of time required for a bit of data to travel from one end to the other
- Usually the same as the propagation delay in underlying hardware
- Throughput
 - The number of bits per second that can be transmitted
 - Related to underlying hardware bandwidth

Relationship Between Digital Throughput And Bandwidth

• Given by Nyquist's theorem:

$$D = 2Blog_2K$$

where

- D is maximum data rate
- B is hardware bandwidth
- K is number of values used to encode data

Applications Of Nyquist's Theorem

For RS-232

- -K is 2 because RS-232 uses two values,
 - +15 or -15 volts, to encode data bits
- $D \text{ is } 2B \log 22 = 2B$
- For phase-shift encoding
 - Suppose K is 8 (possible shifts)
 - $D \text{ is } 2B \log 28 = 2B' 3 = 6B$

More Bad News

- Physics tells us that real systems emit and absorb energy (e.g., thermal)
- Engineers call unwanted energy noise
- Nyquist's theorem
 - Assumes a noise-free system
 - Only works in theory
- Shannon's theorem corrects for noise

Shannon's Theorem

Gives capacity in presence of noise:

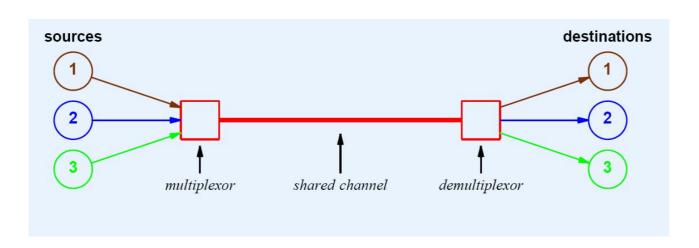
$$C = Blog_2(1 + S/N)$$

where

- C is the effective channel capacity in bits per second
- B is hardware bandwidth
- S is the average power (signal)
- N is the noise
- S/N is signal-to-noise ratio

Application Of Shannon's Theorem

- Conventional telephone system
 - Engineered for voice
 - Bandwidth is 3000 Hz
 - Signal-to-noise ratio is approximately
 1000
 - Effective capacity is $3000log2(1 + 1000) = \sim 30000 bps$
- Conclusion: dialup modems have little hope of exceeding 28.8 Kbps


The Bottom Line

- Nyquist's theorem means finding a way to encode more bits per cycle improves the data rate
- Shannon's theorem means that no amount of clever engineering can overcome the fundamental physical limits of a real transmission system

Multiplexing

- Fundamental to networking
- General concept
- Used in
 - Lowest level of transmission systems
 - Higher levels of network hardware
 - Protocol software
 - Applications

The General Concept Of Multiplexing

- Separate pairs of communications travel across sharedchannel
- Multiplexing prevents interference
- Each destination receives only data sent by corresponding source

Two Basic Types Of Multiplexing

- Time Division Multiplexing (TDM)
 - Only one item at a time on shared channel
 - Item marked to identify source
 - Demultiplexor uses identifying mark to know where to deliver
- Frequency Division Multiplexing (FDM)
 - Multiple items transmitted simultaneously
 - Uses multiple "channels"

Transmission Schemes

- Baseband transmission
 - Uses only low frequencies
 - Encodes data directly
- Broadband transmission
 - Uses multiple carriers
 - Can use higher frequencies
 - Achieves higher throughput
 - Hardware more complex and expensive

Scientific Principle Behind Frequency Division Multiplexing

Two or more signals that use different carrier frequencies can be transmitted over a single medium simultaneously without interference.

Note: this is the same principle that allows a cable TV company to send multiple television signals across a single cable.

Wave Division Multiplexing

- Facts
 - FDM can be used with any electromagnetic radiation
 - Light is electromagnetic radiation
- When applied to light, FDM is called wave division multiplexing
 - Informally called color division multiplexing

Summary

- Various transmission schemes and media available
 - Electrical current over copper
 - Light over glass
 - Electromagnetic waves
- Digital encoding used for data
- Asynchronous communication
 - Used for keyboards and serial ports
 - RS-232 is standard
 - Sender and receiver agree on baud rate

Summary (continued)

- Modems
 - Used for long-distance communication
 - Available for copper, optical fiber, dialup
 - Transmit modulated carrier
 - * Phase-shift modulation popular
 - Classified as full- or half- duplex
- Two measures of digital communication system
 - Delay
 - Throughput

Summary (continued)

- Nyquist's theorem
 - Relates throughput to bandwidth
 - Encourages engineers to use complex encoding
- Shannon's theorem
 - Adjusts for noise
 - Specifies limits on real transmission systems

Summary (continued)

- Multiplexing
 - Fundamental concept
 - Used at many levels
 - Applied in both hardware and software
 - Two basic types
 - * Time-division multiplexing (TDM)
 - * Frequency-division multiplexing (FDM)
- When applied to light, FDM is called wave-division multiplexing

PART III

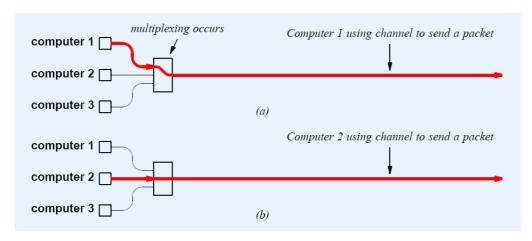
Packets, Frames, Parity, Checksums, and CRCs

The Problem

- Cannot afford individual network connection per pair of computers
- Reasons
 - Installing wires consumes time and money
 - Maintaining wires consumes money (esp. long-distance connections)

Solution

- Network has
 - Shared central core
 - Many attached stations


The Problem With Sharing

- Demand high
- Some applications have large transfers
- Some applications cannot wait
- Need mechanism for fairness

Packet Switching Principle

- Solution for fairness
 - Divide data into small units called packets
 - Allow each station opportunity to send a packet before any station sends another
- Form of time-division multiplexing

Illustration Of Packet Switching

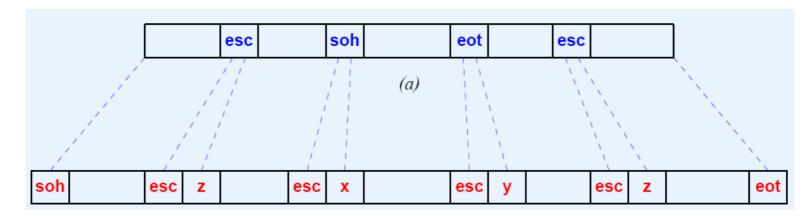
- Acquire shared medium
- Send one packet
- Allow other stations opportunity to send before sending again

Packet Details

- Depend on underlying network
 - Minimum/maximum size
 - Format
- Hardware packet called a frame

Example Frame Format Used With RS-232

soh block of data in frame eot


- RS-232 is character-oriented
- Special characters
 - Start of header (soh)
 - End of text (eot)

When Data Contains Special Characters

- Translate to alternative form
- Called byte stuffing
- Example

Sent
esc x
esc y
esc z

Illustration Of Frame With Byte Stuffing

- Stuffed frame longer than original
- Necessary evil

Handling Errors

- Data can be corrupted during transmission
 - Bits lost
 - Bit values changed
- Frame includes additional information to detect/correct error
 - Set by sender
 - Checked by receiver
- Statistical guarantee

Error Detection And Recovery Techniques

- Parity bit
 - One additional bit per character
 - Can use
 - * Even parity
 - * Odd parity
 - Cannot handle error that changes two bits

Error Detection And Recovery Techniques (continued)

- Checksum
 - Treat data as sequence of integers
 - Compute and send arithmetic sum
 - Handles multiple bit errors
 - Cannot handle all errors

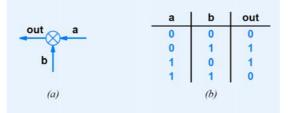
Error Detection And Recovery Techniques (continued)

- Cyclic Redundancy Check (CRC)
 - Mathematical function for data
 - More complex to compute
 - Handles more errors

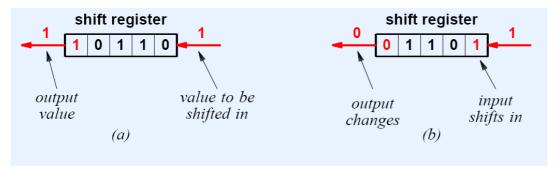
Example Checksum Computation

```
Н
                     0
                                     0
48
          6C
               6C
                               77
                                              6C
     65
                    6F
                          20
                                    6F
                                         72
                                                    64
                                                         2E
4865 + 6C6C + 6F20 + 776F + 726C + 642E + carry = 71FC
```

- Checksum computed over data
- Checksum appended to frame

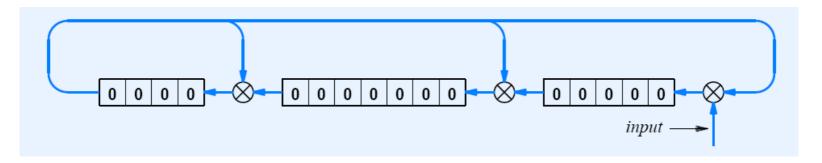

Illustration Of Errors A Checksum Fails To Detect

Data Item In Binary	Checksum Value	Data Item In Binary	Checksum Value
0001	1	0011	3
0010	2	0000	0
0011	3	0001	1
0001	1	0011	3
totals	7		7


- Second bit reversed in each item
- Checksum is the same

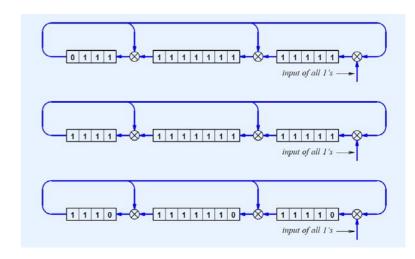
Building Blocks For CRC

Exclusive or



Shift register

- a shows status before shift
- b shows status after shift
- Output same as top bit


Example Of CRC Hardware

- Computes 16-bit CRC
- Registers initialized to zero
- Bits of message shifted in
- CRC found in registers

Example CRC Computation

- Input data is all 1 bits
- CRC shown after 15, 16, and 17 bits shifted
- Feedback introduces zeroes in CRC

Illustration Of Frame Using CRC

CRC covers data only

Summary

- Packet technology
 - Invented to provide fair access in shared network
 - Sender divides data into small packets
- Hardware packets called frames
- Can use packet-switching with RS-232
 - Special characters delimit beginning and end of frame
 - Byte-stuffing needed when special characters appear in data

Summary (continued)

- To detect data corruption
 - Sender adds information to packet
 - Receiver checks
- Techniques
 - Parity bit
 - Checksum
 - Cyclic Redundancy Check (CRC)
 - Provide statistical guarantees

PART IV

Local Area Networks (LANs)

Classification Terminology

- Network technologies classified into three broad categories
- Local Area Network (LAN)
- Metropolitan Area Network (MAN)
- Wide Area Network (WAN)
- LAN and WAN most widely deployed

The Local Area Network (LAN)

- Engineering classification
- Extremely popular (most networks are LANs)
- Many LAN technologies exist