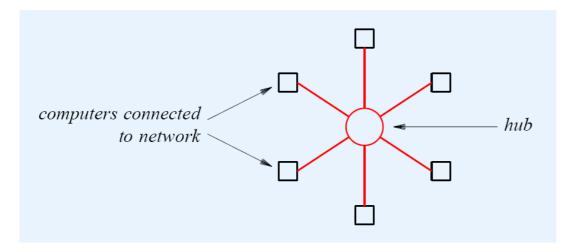
Key Features Of A LAN

- High throughput
- Relatively low cost
- Limited to short distance
- Often rely on shared media

Scientific Justification For Local Area Networks

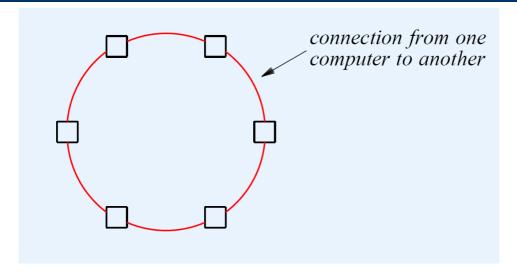
• A computer is more likely to communicate with computers that are nearby than with computers that are distant.

Known as the *locality principle*

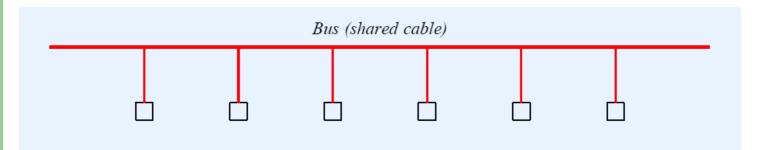

Topology

- Mathematical term
- Roughly interpreted as "geometry for curved surfaces"

Network Topology


- Specifies general "shape" of a network
- Handful of broad categories
- Often applied to LAN
- Primarily refers to interconnections
- Hides details of actual devices

Star Topology

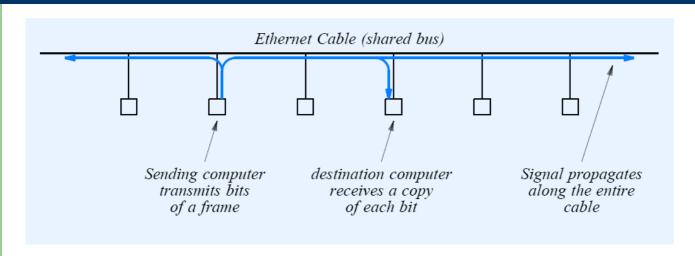

- Central component of network known as hub
- Each computer has separate connection to hub

Ring Topology

- No central facility
- Connections go directly from one computer to another

Bus Topology

- Shared medium forms main interconnect
- Each computer has a connection to the medium


Example Bus Network: Ethernet

- Most popular LAN
- Widely used
- IEEE standard 802.3
- Several generations
 - Same frame format
 - Different data rates
 - Different wiring schemes

Shared Medium In A LAN

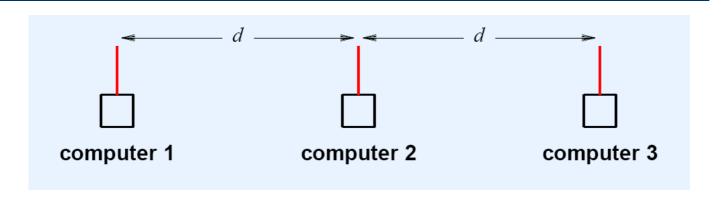
- Shared medium used for all transmissions
- Only one station transmits at any time
- Stations "take turns" using medium
- Media Access Control (MAC) policy ensures fairness

Illustration Of Ethernet Transmission

- Only one station transmits at any time
- Signal propagates across entire cable
- All stations receive transmission
- CSMA/CD media access scheme

CSMA/CD Paradigm

- Multiple Access (MA)
 - Multiple computers attach to shared media
 - Each uses same access algorithm
- Carrier Sense (CS)
 - Wait until medium idle
 - Begin to transmit frame
- Simultaneous transmission possible


CSMA/CD Paradigm (continued)

- Two simultaneous transmissions
 - Interfere with one another
 - Called collision
- CSMA plus *Collision Detection (CD)*
 - Listen to medium during transmission
 - Detect whether another station's signal interferes
 - Back off from interference and try again

Backoff After Collision

- When collision occurs
 - Wait random time t1, 0 £ t1 £ d
 - Use CSMA and try again
- If second collision occurs
 - Wait random time t2, 0 £ t2 £ 2d
- Double range for each successive collision
- Called exponential backoff

Media Access On A Wireless Net

- Limited range
 - Not all stations receive all transmissions
 - Cannot use CSMA/CD
- Example in diagram
 - Maximum transmission distance is d
 - Stations 1 and 3 do not receive each other's transmissions

CSMA/CA

- Used on wireless LANs
- Both sides send small message followed by data transmission
 - "X is about to send to Y"
 - "Y is about to receive from X"
 - Data frame sent from X to Y
- Purpose: inform all stations in range of X or Y before transmission
- Known as Collision Avoidance (CA)

Wi-Fi Wireless LAN Technology

- Popular
- Uses CSMA/CA for media access
- Standards set by IEEE
 - -802.11b (11 Mbps, shared channel)
 - -802.11a (54 Mbps, shared channel)
- Named Wi-Fi by consortium of vendors (to enhance popular appeal)

Identifying A Destination

- All stations on shared-media LAN receive all transmissions
- To allow sender to specify destination
 - Each station assigned unique number
 - Known as station's address
 - Each frame contains address of intended recipient

Ethernet Addressing

- Standardized by IEEE
- Each station assigned unique 48-bit address
- Address assigned when network interface card (N/C) manufactured

Ethernet Address Recognition

- Each frame contains destination address
- All stations receive a transmission
- Station discards any frame addressed to another station
- Important: interface hardware, not software, checks address

Possible Destinations

- Packet can be sent to:
 - Single destination (unicast)
 - All stations on network (broadcast)
 - Subset of stations (multicast)
- Address used to distinguish

Advantages Of Address Alternatives

- Unicast
 - Efficient for interaction between two computers
- Broadcast
 - Efficient for transmitting to all computers
- Multicast
 - Efficient for transmitting to a subset of computers

Broadcast On Ethernet

- All 1s address specifies broadcast
- Sender
 - Places broadcast address in frame
 - Transmits one copy on shared network
 - All stations receive copy
- Receiver always accepts frame that contains
 - Station's unicast address
 - The broadcast address

Multicast On Ethernet

- Half of addresses reserved for multicast
- Network interface card
 - Always accepts unicast and broadcast
 - Can accept zero or more multicast addresses
- Software
 - Determines multicast address to accept
 - Informs network interface card

Promiscuous Mode

- Designed for testing/debugging
- Allows interface to accept all packets
- Available on most interface hardware

Identifying Frame Contents

- Integer type field tells recipient the type of data being carried
- Two possibilities
 - Self-identifying or explicit type (hardware records type)
 - Implicit type (application sending data must handle type)

Conceptual Frame Format

Frame Data Area Header or Payload

- Header
 - Contains address and type information
 - Layout fixed
- Payload
 - Contains data being sent

Illustration Of Ethernet Frame

_	Preamble	Dest. Address	Source Frame Address Type			CRC
	8	6	6	2	46 - 1500	4
Header — Payload —						

Sender places

- Sender's address in source
- Recipient's address in destination
- Type of data in *frame type*
- Cyclic redundancy check in CRC

Example Ethernet Types

Value Meaning

0000-05DC Reserved for use with IEEE LLC/SNAP

0800 Internet IP Version 4

0805 CCITT X.25

0900 Ungermann-Bass Corporation network debugger

0BAD Banyan Systems Corporation VINES 1000–100F Berkeley UNIX Trailer encapsulation 6004 Digital Equipment Corporation LAT

6559 Frame Relay

8005 Hewlett Packard Corporation network probe

8008 AT&T Corporation

8014 Silicon Graphics Corporation network games

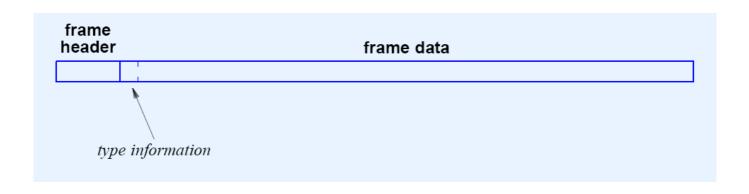
8035 Internet Reverse ARP

8038 Digital Equipment Corporation LANBridge

805C Stanford University V Kernel

809B Apple Computer Corporation AppleTalk

80C4-80C5 Banyan Systems Corporation


80D5 IBM Corporation SNA
80FF-8103 Wellfleet Communications
8137-8138 Novell Corporation IPX
818D Motorola Corporation

FFFF Reserved

When Network Hardware Does Not Include Types

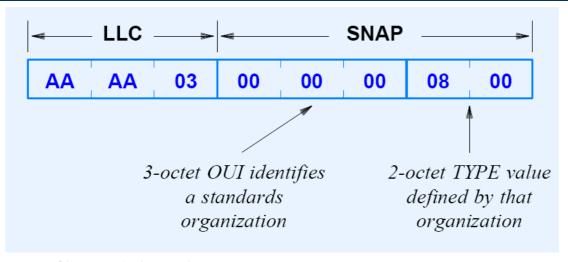

- Sending and receiving computers must agree
 - To only send one type of data
 - To put type information in first few octets of payload
- Most systems need type information

Illustration Of Type Information Added To Data

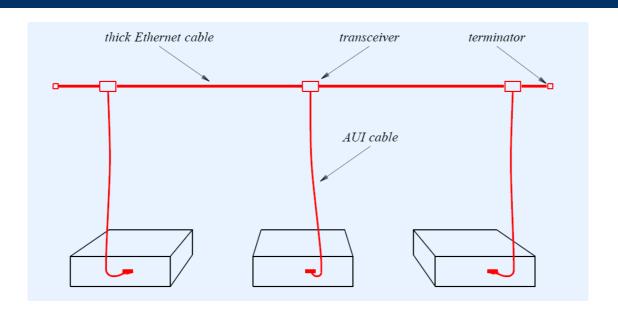
- In practice
 - Type information small compared to data carried
 - Format of type information standardized

A Standard For Type Information

- Defined by IEEE
- Used when hardware does not include type field
- Called LLC/SNAP header

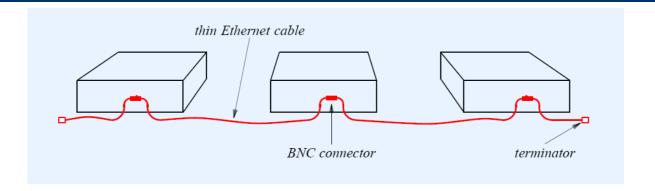
Demultiplexing On Type

- Network interface hardware
 - Receives copy of each transmitted frame
 - Examines address and either discards or accepts
 - Passes accepted frame to system software
- Network device software
 - Examines frame type
 - Passes frame to correct software module

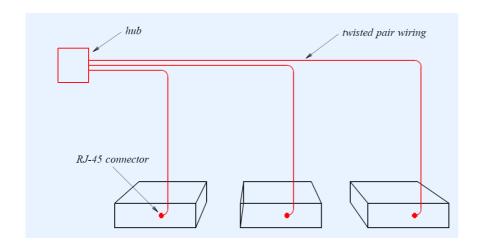

Network Analyzer

- Device used for testing and maintenance
- Listens in promiscuous mode
- Produces
 - Summaries (e.g., % of broadcast frames)
 - Specific items (e.g., frames from a given address)

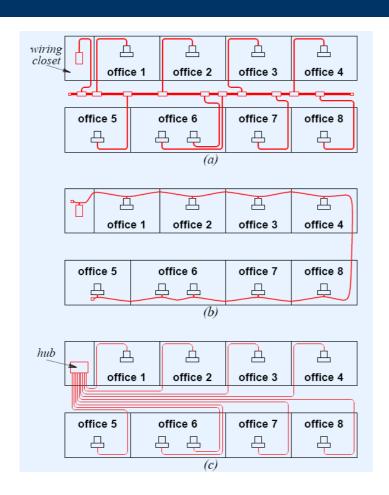
Ethernet Wiring


- Three schemes
 - Correspond to three generations
 - All use same frame format

Original Ethernet Wiring


- Used heavy coaxial cable
- Formal name 10Base5
- Called thicknet

Second Generation Ethernet Wiring


- Used thinner coaxial cable
- Formal name 10Base2
- Called thinnet

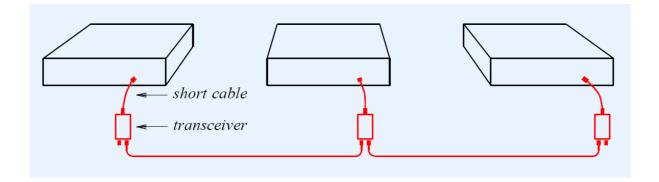
Modern Ethernet Wiring

- Uses a hub
- Formal name 10Base-T
- Called twisted pair Ethernet

Ethernet Wiring In An Office

A Note About Ethernet Topology

- Apparently
 - Original Ethernet used bus topology
 - Modern Ethernet uses star topology
- In fact, modern Ethernet is
 - Physical star
 - Logical bus
 - Called star-shaped bus


Higher Speed Ethernets

- Fast Ethernet
 - Operates at 100 Mbps
 - Formally 100Base-T
 - Two wiring standards
 - 10/100 Ethernet devices available
- Gigabit Ethernet
 - Operates at 1000 Mbps (1 Gbps)
 - Slightly more expensive

Another LAN Using Bus Topology

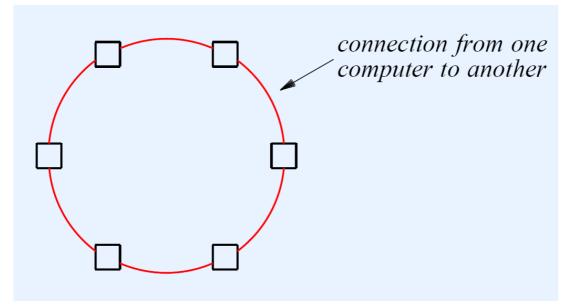
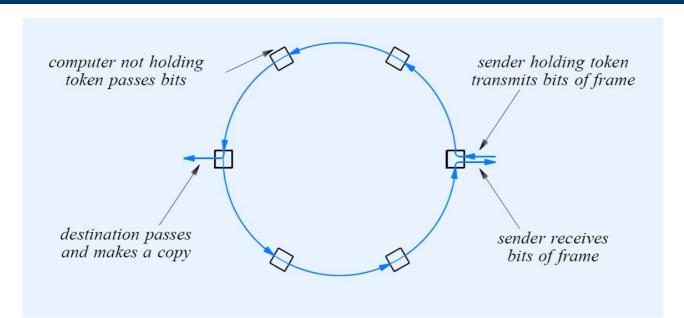

- LocalTalk
 - Developed by Apple Corp.
 - Simple to use
 - Slow by current standards

Illustration Of LocalTalk

- Transceiver required per station
- Transceiver terminates cable

Ring Topology

- Once a popular topology for LANs
- Bits flow in single direction


Token Passing

- Designed for ring topology
- Guarantees fair access
- Token
 - Special (reserved) message
 - Small (a few bits)

Token Passing Paradigm

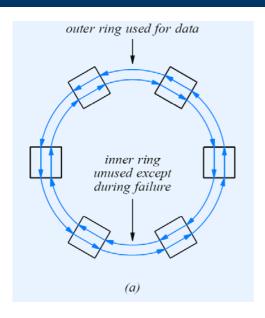
- Station
 - Waits for token to arrive
 - Transmits one packet around ring
 - Transmits token around ring
- When no station has data to send
 - Token circulates continuously

Token Passing Ring Transmission

- Station waits for token before sending
- Signal travels around entire ring
- Sender receives its own transmission

Strengths Of Token Ring Approach

- Easy detection of
 - Broken ring
 - Hardware failures
 - Interference


Weaknesses Of Token Ring Approach

- Broken wire disables entire ring
- Point-to-point wiring
 - Awkward in office environment
 - Difficult to add/move stations

Failure Recovery In Ring Networks

- Automatic failure recovery
- Introduced by FDDI
- Uses two rings
- Terminology
 - Dual-attached
 - Counter rotating
 - Self healing

Illustration Of Failure Recovery

Normal operation uses one of two rings