
삼성전자 Track(전전전) 구성도

TRACK Point 산출 기준

구분	산출기준	
기본 (Basic Knowledge)	□ 과목별 취득 학점에 따라 점수 부여 - A+(3), A(3), B(2), C(1), D(1)	
기본 (Basic Science)	□ 과목별 취득 학점에 따라 점수 부여 - A+(4). A(3), B(2), C(1), D(1)	
발전	□ 과목별 취득 학점에 따라 점수 부여 - A+(4), A(3), B(2), C(1), D(1)	
심화	□ 과목별 취득학점에 따른 배점 - A+(6), A(4), B(3), C(2), D(1) □ Track 완성 시 가중점수 부여 : 해당 Track 점수의 1.3배	
Project	□ 학점부여 방법에 따라 차등운영 - A,B,C 평가시 : A+(8), A(6), B(4), C(2), D(1) - P/F 평가시 : Pass (6), Fail (0)	

심화 Track별 목표 및 소요부서

분야	TRACK	Track 목표	
Embedded	Track 1	1. Embedded System을 위한 Boot Loader, File System 및 Device Driver에 대한 구축 및 개발이 가능한 수준 2. OS Kernel, Middleware 이해 및 개발수준	
Application	Track 2	1. Web 기반 응용 구축 및 GUI등을 기반으로 하는] User Interface를 개발할 수 있는 수준 2. Network 프로그램 개발 가능 수준	
Multimedia	Track 3	1. Video 및 Audio의 기본특성 및 압축,전송 포맷을 이해하고 저작 및 재생 Application 개발이 가능한 수준	
IP	Track 4	1. IP 전반의 기초 (라우팅 프로토콜, IPv4, IPv6) 및 응용기술 (Mobile IP, QoS, Security, 차세대망 등) 이해 2. IP 및 네트워크 프로그래밍이 가능한 수준	
Communication System Design	Track 5	1. 통신망 전반에 대한 기초, 응용 기술 이해 2. 디지털 통신의 기초 이론 및 차세대 통신시스템 이해 3. 여러 시스템의 용량 성능 비교 가능한 수준	
Multimedia System Design	Track 6	1. 멀티미디어 시스템 및 기본 구조, 모델을 이해 2. 시스템 설계 및 성능 분석, 검증 능력 배양	
SoC	Track 7	1. SoC 목적 및 방법의 기본소양을 이해 2. VHDL/Verilog 언어를 이용한 ASIC 설계/제작/성능분석 배양	
Power Design	Track 8	1. 전력 공급을 위한 Motor의 원리 이해 및 제어 능력 배양 2. Power 소자를 제어하고 SMPS 설계 가능한 수준	

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	Embedded OS	- 임베디드 시스템, 임베디드 운영체제에 대한 개괄적인 지식 습득 - 임베디드 시스템의 개발환경을 이해 - 임베디드 리눅스의 특성을 숙지
	□⊒ System Programming	- Embedded Linux 개발에 최적화된 통합 개발환경 사용을 통한 개발환경 이해 - Target Platform(ARM9)을 통한 Linux 포팅 및 Remote Debugging 기법 습득. - System/Application Optimazation tool 및 Profiling tool을 활용한 target 최적화 기법 및 고급 debugging 기법 습득.
Embedded	Device Driver	- 마이크로프로세서의 내부구조와, 메모리 및 입출력기기 인터페이스 설계방법 - 직병렬 입출력기기등 주변기기의 인터페이스 설계 학습 - 임베디드소프트웨어 개발 방법 실습 - 어셈블리언어를 이용한 펌웨어의 개발 - C 언어를 이용한 실시간운영체제의 이식과정 학습
	RTOS Kernel	- Embedded system에 포팅되는 RTOS의 커널의 특징, 시스템, 구조 등을 이해하고 구현을 Source level에서 확인

구분	Tree 구성 교과목	과정 세부 내용
	Web Programming	- HTML,CSS,스크립트 언어 등 웹 구축을 위한 클라이언트 사이드 프로그래밍 언어의 개념과 문법,활용지식들 습득 - 동적인 웹페이지 설계를 위한 CGI,PHP 등의 서버 사이드 프로그래밍 활용 지식 습득
	Network Programming	- 차세대 인터넷, 인터넷 텔리포니, 그리고 인터넷 방송 등의 요소 기술 등에 관한 전반적 이해 - 실습을 통한 활용지식 습득
Application	정보 시스템 보안	- 다양한 Security 공통기반 기술 숙지 - 고급정보처리응용 분야에 필요한 정보보호 기능 설계, 개발, 운용, 관리 능력 함양
	HCI	- 인간중심의 디자인의 원리와 프로세스 및 이와 관련된 제반 기법 이해 - 사용자와 소프트웨어, 컴퓨터를 포함한 제품과 인간의 인터페이스 설계 및 디자인

구분	Tree 구성 교과목	과정 세부 내용
	수치해석	- 수치미분, 수치적분, Fitting 및 보간법 이해 - 이를 응용한 전자기학의 Electrostatic 및 Electromagnetic 문제에 대한 풀이법 습득 - 프로그래밍 실습
Multimedia	디지털 신호처리	- 디지털필터(FIR, IIR 필터) 설계방법 - 입출력 신호의 주파 특성을 해석하는 방법 - Z-변환의 성질 및 응용 - MATLAB 이용하여 직접 프로그래밍 실습
Muttiniedia	Computer Graphics	- 2D와 3D 객체의 생성과 디스플레이를 위한 기술 습득 - 그래픽스를 위한 자료구조 이해 - 그래픽 프로그래밍 언어, 기학학적 변환 등 관련 이론 습득
	음성/영상 신호처리	- 디지털 음성/ 영상신호의 표현, 신호처리의 기본 단계, 신호처리 시스템의 요소 - 디지털 음성/영상의 기초, 푸리에 변환, 향상 및 신호 복구 등

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	TCP/IP	- TCP/IP 프로토콜을 중심으로 한 데이터링크, 네트웍, 트랜스포트, 애플리케이션 계층의 표준 인터넷 프로토콜 이해 - ARP, IP, RIP, ICMP, TCP, UDP, TELNET, FT, HTTP, SMTP,DNS등
	IP 심화	- Mobile IPv4/Mobile IPv6, HA,FA,CN이해(구조,망) - QoS 기술 및 Protocol(Intserv, Diffserv, RSVP) - VoIP - 망 구조 및 관련 protocol - PSIN - IP연동망 구조 - MG, MGC, softswitch
IP	Wireless LAN	- WLAN/WiBro 구조 및 망 이해 - WLAN 요소 기술, 802.11계열 spec. 이해 - WLAN Security 및 인증 protocol, 802.1x, WPA, WEP. ESP
	차세대 네트워크	- BcN 개념 및 망구조 이해 - MPLS, QoS, 방송/통신/인터넷 통합망 구조 - 홈 N/W 구조 및 관련기술, WLAN, WWB,Blue tooth, XDSL, STB, PLC, IEEE/394 - FTTH 구조 및 관련기술 - 차세대N/W기술, Wireless meshN/W, WiBro/WiMax, DMB, 4G

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	디지털 통신	- 디지털 통신시스템 모델,채널용량, PAM, PCM, PDM - 베이스 밴드 및 반송파 방식, 멀티 플렉싱 - 디지털 변,복조 방식(ASK,FSK,PSK), 채널코딩, 코딩이득 - 효율적인 디지털 변,복조 방식의 설계.
Communication	통신 시스템 설계	- RF System/Circuit Design - Transiver Architecture, Noise/IM/Gain/spectrum Mask
System Design	이동통신 공학	- 셀룰러 시스템 이해, PCS 시스템 이해, CDMA/WCDMA 기술이해 - 확산대역, CDMA용량, hand over, 이동통신망 설계이해 - 이동통신 Network 운용기술 이해 - 향후 이동통신 시스템 발전방향 파악
	초고주파 공학	- 초고주파 회로설계 - 광섬유해석 - 안테나 및 전파, 레이다공학 - 전파의 산란/복사

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	광전자 공학	- 균질 매질, 비균질 매질 및 화이버 내에서의 광의 전파특성, 광공진기 - atomic system에서의 radiation 특성 이해 - 레이저 발진의 기본원리 이해 - 2차 고주파 발생과 파라메트릭 발진 - 레이저 빔의 전기광학적 변도 / 빛과 음향의 상호작용
Multimedia System	색체공학	- 혼색이론, 색채 지각 이론, Psycophysics 이해 - Munsell System, CIE 색좌표계 등 이해 - 색채 측정 원리 및 방법 습득 - Color Appearance 현상 및 Model 이해 - Digital Color Management를 위한 Profile 을 제작 및 Device의 특성 분석
Design	시스템 디자인 특론	- SI(Signal Integrity)의 개념 및 범위 이해 - PCB Stack up시 각 패턴의 임피던스 이해 - 패턴의 구조가 SI에 미치는 영향 이해 - 전원부 noise의 발생 원인 및 대응 기법 습득
	디스플레이 공학	- 기하광학, Maxwell 방정식 이해 - Anisotropic Material 내에서의 광의 전파특성, Birefringence 특성, Poinc'are Sphere에 의한 편광상태 해석, Extended Jone's Calculus, 4x4 Matrix 등 이해

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	물리전자	- 도체, 유전체, 자성체의 전기적 성질과 이의 해석 방법 습득 - 양자역학의 기본 이론, 양자화의 개념, Schrödinger 방정식 - 격자진동과 이의 양자화, 전자장의 양자화
	반도체 공정	- 리소그래피, 증착, 산화, 식각, 이온주입 공정 과정 이해 - 집적회로 제작을 위한 반도체 공정 전반에 대한 원리와 응용 - 장비구조 학습
	ASIC 설계	- 디지털 시스템 설계 기법 습득 - Prototyping 방법과 IC Layout 방법 습득 - Front-end 설계과정 및 Back-end설계과정 습득
	SoC ≒론	- CAD tool 환경 및 사용법 - 디지털 설계 및 Simulation, FPGA 및 ASIC 구현 - 아날로그 설계 및 Simulation, Layout, 혼성신호 SoC 구현 및 실습

구분	Tree <mark>구성 교과목</mark>	과정 세부 내용
	Micro Process 응용	- 마이크로프로세서 시스템의 동작 및 프로그래밍 기법 실험 - 마이크로프로세서의 동작에 사용되는 명령어 습득 - registers, ALU, stack, 인터럽트 등의 동작 및 사용원리 - 직/병렬 입출력 소자, 타이머, 인터럽트 제어기 등의 작동 방법 습득
Power	제어공학	- 신호의 성질 및 시스템의 기본 특성 파악 - 선형 시스템 이해 및 실습
Design	Sensor 공략	- 오실로스코프, 멀티미터, 함수발생기 및 파워 등 계측기 기본 원리 실험 - 기계적인 센서들의 인터페이스 및 특징 제작실습
	EMI/EMC	- 전자기파의 특성 이해 - EMI 범위 및 현상 이해 - EMI 디버깅 및 EMI 필터 동작원리 이해 및 구현