
Combinational Logic Technologies

S Standard gates
 gate packages
 cell libraries cell libraries

 Regular logic
 multiplexersp
 decoders

 Two-level programmable logic
 PALs
 PLAs
 ROMs ROMs

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Random logic

() Transistors quickly integrated into logic gates (1960s)
 Catalog of common gates (1970s)

 Texas Instruments Logic Data Book the yellow bible Texas Instruments Logic Data Book – the yellow bible
 all common packages listed and characterized (delays, power)
 typical packages: yp p g

 in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

 Today, very few parts are still in use
 However, parts libraries exist for chip design

 designers reuse already characterized logic gates on chips
 same reasons as before same reasons as before
 difference is that the parts don’t exist in physical inventory –

created as needed

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Random logic

f Too hard to figure out exactly what gates to use
 map from logic to NAND/NOR networks
 determine minimum number of packages determine minimum number of packages

 slight changes to logic function could decrease cost

 Changes to difficult to realize
 need to rewire parts
 may need new parts

d i ith (f t i t d t b d) design with spares (few extra inverters and gates on every board)

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Regular logic

f Need to make design faster
 Need to make engineering changes easier to make

Simpler for designers to understand and map to functionality Simpler for designers to understand and map to functionality
 harder to think in terms of specific gates
 better to think in terms of a large multi-purpose block better to think in terms of a large multi purpose block

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

Making connections

 Direct point-to-point connections between gates
 wires we've seen so far

 Route one of many inputs to a single output multiplexer Route one of many inputs to a single output --- multiplexer
 Route a single input to one of many outputs --- demultiplexer

control control

multiplexer demultiplexer 4x4 switch

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

Mux and demux

S f Switch implementation of multiplexers and demultiplexers
 can be composed to make arbitrary size switching networks
 used to implement multiple-source/multiple-destination used to implement multiple-source/multiple-destination

interconnections

A YA

B

Y

Z

A Y

B

A

B

Y

Z

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 6

Mux and demux (cont'd)

f /

B0

 Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

multiple input sourcesMUX Sa Sb

0

MUX

0

A B

Sum

multiple output destinationsSs DEMUX

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

S0 S1

Multiplexers/selectors

/ Multiplexers/selectors: general concept
 2n data inputs, n control inputs (called "selects"), 1 output
 used to connect 2n points to a single point

A Z I1 I0 A Z

 used to connect 2 points to a single point
 control signal pattern forms binary index of input connected to

output
A Z
0 I0

1 I1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0

Z = A' I0 + A I1

functional form

logical form

0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1

two alternative forms
for a 2:1 Mux truth table

logical form 1 1 0 1
1 1 1 1

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

Multiplexers/selectors (cont'd)

 2:1 mux: Z = A'I0 + AI1
 4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3

8:1 mux: Z = A'B'C'I + A'B'CI + A'BC'I + A'BCI +

n

 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

2 -1
I0
I1
I2

k=0

n
 In general: Z =  (mkIk)

f f n I3
I4
I5
I6

8:1
mux

Z

I0
I1 4:1 Z

 in minterm shorthand form for a 2n:1 Mux

I7

A B C

I2
I3

A B

4:1
mux

ZI0
I1

A

2:1
mux Z

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

A BA

Gate level implementation of muxes

 2:1 mux

 4:1 mux

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Cascading multiplexers

 Large multiplexers can be made by cascading smaller ones

I0
I1 4:1

8:1
mux

alternative
implementation

I0
Z

I1
I2
I3

I4

4:1
mux

2:1
mux

2:1
mux

2:1I2
I3

I0
I1

8:1
mux

I4
I5
I6
I7

4:1
mux

Z4:1
mux

mux

2:1
mux

I4
I5

I3

AB C

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the

mux

2:1
mux

I6
I7

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

control signal A chooses which of the
upper or lower mux's output to gate to Z

C A B

Multiplexers as general-purpose logic

n f f A 2n:1 multiplexer can implement any function of n variables
 with the variables used as control inputs and
 the data inputs tied to 0 or 1 the data inputs tied to 0 or 1
 in essence, a lookup table

 Example: 0
1

1p
 F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'C'(1) + A'B'C(0)

1
2
3
4
5

8:1 MUX Z

0
1
0
0 F

= A B C (1) + A B C(0)
+ A'BC'(1) + A'BC(0)
+ AB'C'(0) + AB'C(0)

ABC'(1) ABC(1)

5
6
7
S2 S1 S0

0
1
1

+ ABC'(1) + ABC(1)

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
CA B

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Z A B C I0 + A B CI1 + A BC I2 + A BCI3 +
AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

Multiplexers as general-purpose logic (cont’d)

n 1 f f A 2n-1:1 multiplexer can implement any function of n variables
 with n-1 variables used as control inputs and
 the data inputs tied to the last variable or its complement the data inputs tied to the last variable or its complement

 Example:
 F(A,B,C) = m0 + m2 + m6 + m7

01

(, ,)
= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

A B C F
0 0 0 1
0 0 1 0
0 1 0 1

C'

C'
F

0
1 4:1 MUX

C'
C'F

0
1
2
3
4

1
0
1
0
0 8 1 MUX 0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1

C'

0

1 A B

S1 S0

2
3

4:1 MUX
0
1

F4
5
6
7

0
0
1
1

S2

8:1 MUX

S1 S0

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

1 1 0 1
1 1 1 1

1 A B

CA B

S2 S1 S0

Multiplexers as general-purpose logic (cont’d)

four possibleI0 I1 . . . In 1 In F
G

n-1 mux control
variables

four possible
configurations
of truth table
rows can be
expressed as

I0 I1 . . . In-1 In F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

 Generalization

single mux data
variable

p
a function of In

0 In In' 1

 Example:
A B C D G
0 0 0 0 1
0 0 0 1 1 1 Example:

G(A,B,C,D)
can be realized

0
1
2

1
D
0

0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0

1

D

0
by an 8:1 MUX 2

3
4
5
6

0
1
D’
D
D’

8:1 MUX

0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0

0

1

D'

choose A,B,C as
control variables

6
7

D’
D’

S2 S1 S0

1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0

D

D

D’

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

CA B
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

D

D’

Activity

C C Realize F = B’CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1

0 when B’C’

0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0

D’ when B’C

h ’

F
0
1
2

4:1 MUX

0
D’
A

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1

A when BC’

0 when BC
B C

S1 S030

1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0 Z = B’C’(0) + B’C(D’) + BC’(A) + BC(0)

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

1 1 1 1 0

Demultiplexers/decoders

/ Decoders/demultiplexers: general concept
 single data input, n control inputs, 2n outputs
 control inputs (called “selects” (S)) represent binary index of control inputs (called selects (S)) represent binary index of

output to which the input is connected
 data input usually called “enable” (G)

1:2 Decoder:
O0 = G  S’

3:8 Decoder:
O0 = G  S2’  S1’  S0’

O1 = G  S

2:4 Decoder:
O0 = G  S1’  S0’

O1 = G  S2’  S1’  S0
O2 = G  S2’  S1  S0’
O3 = G  S2’  S1  S0
O4 = G  S2  S1’  S0’O0 = G  S1  S0

O1 = G  S1’  S0
O2 = G  S1  S0’
O3 = G  S1  S0

O4 = G  S2  S1  S0
O5 = G  S2  S1’  S0
O6 = G  S2  S1  S0’
O7 = G  S2  S1  S0

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Gate level implementation of demultiplexers

active high active lowactive-high
enable

active-low
enable

O0G

S
O0₩G

S

 1:2 decoders

S

O1

S

O1

active-high
bl

active-low
bl

O0G

O1

O0₩G

O1

 2:4 decoders

enable enable

O2

O1

O2

O1

O3 O3

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

S1 S0 S1 S0

Demultiplexers as general-purpose logic

f f A n:2n decoder can implement any function of n variables
 with the variables used as control inputs
 the enable inputs tied to 1 and the enable inputs tied to 1 and
 the appropriate minterms summed to form the function

demultiplexer generates appropriate
i t b d t l i l

A'B'C'
A'B'C
A'BC'

0
1
2
3 minterm based on control signals

(it "decodes" control signals)
A'BC
AB'C'
AB'C
ABC'

3
4
5
6
7

3:8 DEC“1”

ABC

CA B

7
S2 S1 S0

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

CA B

Demultiplexers as general-purpose logic (cont’d)

C C C F1 = A'BC'D + A'B'CD + ABCD
 F2 = ABC'D' + ABC

F3 = (A' + B' + C' + D')
0 A'B'C'D'
1 A'B'C'D

F1
 F3 = (A' + B' + C' + D') 1 A B C D

2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D

F2

5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'

4:16
DECEnable F2

9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'

DEC

F3

12 ABC D
13 ABC'D
14 ABCD'
15 ABCD

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

A B C D

Cascading decoders

0 A'B'C'D'E'
1
2
3

0
1
2 A'BC'DE'
3

 5:32 decoder
 1x2:4 decoder
 4x3:8 decoders 3

4
5
6
7

S2

3:8 DEC

S1 S0

3
4
5
6
7S2

3:8 DEC

S1 S0

 4x3:8 decoders

S2 S1 S0
0
1
2
3S1

2:4 DEC

S0

F

S2 S1 S0

0 AB'C'D'E'0
A B

0 AB'C'D'E'
1
2
3
4
5

3:8 DEC

0
1
2
3
4
5

3:8 DEC

EC D

5
6
7 AB'CDE

5
6
7 ABCDE

EC D

S2 S1 S0 S2 S1 S0

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

EC DEC D

Programmable logic arrays

f f /O Pre-fabricated building block of many AND/OR gates
 actually NOR or NAND
 "personalized" by making/breaking connections among the gates

• • •

 personalized by making/breaking connections among the gates
 programmable array block diagram for sum of products form

• • •

inputs

AND
array

OR
arrayproduct

terms

• • •

outputs

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

• • •

Enabling concept

S

F0 = A + B' C'
F1 A C' + A B

 Shared product terms among outputs

example: F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term

input side:

0 = complemented in term
– = does not participate

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
1 = term connected to output
0 = no connection to output

B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0

reuse of terms

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

A 1 – – 1 0 0 1
reuse of terms

Before programming

f All possible connections are available before "programming"
 in reality, all AND and OR gates are NANDs

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

After programming

 Unwanted connections are "blown"
 fuse (normally connected, break unwanted ones)
 anti-fuse (normally disconnected make wanted connections)

A B C
 anti-fuse (normally disconnected, make wanted connections)

AB

B'C

AC'

B'C'

A

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

F1 F2 F3F0

Alternate representation for high fan-in structures

S Short-hand notation so we don't have to draw all the wires
 signifies a connection is present and perpendicular signal is an

input to gate
notation for implementing

F0 = A B + A' B'
F1 = C D' + C' D

input to gate

AB

A B C D

AB

A'B'

CD'

C'D

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

AB+A'B'
CD'+C'D

Programmable logic array example

f f C

A B C

full decoder as for memory address

bits stored in memory

 Multiple functions of A, B, C
 F1 = A B C
 F2 = A + B + C

A'B'C'

A'B'C

 F2 = A + B + C
 F3 = A' B' C'
 F4 = A' + B' + C'

A'BC'

A'BC

AB'C'

 F5 = A xor B xor C
 F6 = A xnor B xnor C

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1

AB'C'

AB'C

ABC'0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0

ABC

ABC

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1 F1 F2 F3 F4 F5

F6

PALs and PLAs

() Programmable logic array (PLA)
 what we've seen so far
 unconstrained fully-general AND and OR arrays unconstrained fully-general AND and OR arrays

 Programmable array logic (PAL)
 constrained topology of the OR arrayp gy y
 innovation by Monolithic Memories
 faster and smaller OR plane

a given column of the OR arraya given column of the OR array
has access to only a subset of

the possible product terms

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

PALs and PLAs: design example

C G
A B C D W X Y Z
0 0 0 0 0 0 0 0

 BCD to Gray code converter

minimized functions:

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0

W = A + BD + BC
X = BC'
Y = B + C

0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1

Z = A'B'C'D + BCD + AD' + B'CD'1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

PALs and PLAs: design example (cont’d)

i i i d f iC
A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C

 Code converter: programmed PLA

A Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A

BD

BC

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

BC'

B
are shared among outputsC

A'B'C'D

BCD

however, much more compact
and regular implementation

when compared with discrete
d

BCD

AD'

BCD'

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

AND and OR gates

W X Y Z

PALs and PLAs: design example (cont’d)

A B C D

C A

BD

BC

 Code converter: programmed PAL

0

BC'

0

4 product terms
per each OR gate

0

0

B

C

0

0

A'B'C'D

BCD

AD'

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

B'CD'

W X Y Z

PALs and PLAs: design example (cont’d)

C Code converter: NAND gate implementation
 loss or regularity, harder to understand
 harder to make changes

B
C

AA

 harder to make changes

W

Z

B

B

B

C

C

D

D

D

X

Z

B

₩BC

C
A
₩D

Y
B

CC

₩D

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

B

PALs and PLAs: another design example

A B C D

A'B'C'D'

A'BC'D

 Magnitude comparator
A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 ABCD

AB'CD'

AC'

0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0

A'C

B'D

'

0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1 BD'

A'B'D

B'CD

1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1

ABC

BC'D'

1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

EQ NE LT GT

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

Activity

f f Map the following functions to the PLA below:
 W = AB + A’C’ + BC’
 X = ABC + AB’ + A’B

A B C

 X = ABC + AB + A B
 Y = ABC’ + BC + B’C’

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

W X Y

Activity (cont’d)

9 t ’t fit i 7 t PLA 9 terms won’t fit in a 7 term PLA
 can apply concensus theorem

to W to simplify to:
W = AB + A’C’ ABC

A B C

W = AB + A C
 8 terms wont’ fit in a 7 term PLA

 observe that AB = ABC + ABC’
it W t t

ABC

ABC’

A’C’
 can rewrite W to reuse terms:

W = ABC + ABC’ + A’C’
 Now it fits

AC

AB’

A’B
 W = ABC + ABC’ + A’C’
 X = ABC + AB’ + A’B
 Y = ABC’ + BC + B’C’

BC

B’C’

 This is called technology mapping
 manipulating logic functions

so that they can use available

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

resources
W X Y

Read-only memories

d li (lf word lines (only one
is active – decoder is
just right for this)

 Two dimensional array of 1s and 0s
 entry (row) is called a "word"
 width of row = word-size

2 1
n

1 1 1 1 width of row = word-size
 index is called an "address"
 address is input

decoder

2 -1

word[i] = 0011

word[j] = 1010j

i
 selected word is output

0

word[j] = 1010j

internal organization

0 n-1

Address
bit lines (normally pulled to 1 through
resistor selectively connected to 0

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

resistor – selectively connected to 0
by word line controlled switches)

ROMs and combinational logic

C (f) Combinational logic implementation (two-level canonical form)
using a ROM

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'F2 = A B C + A B C + A B C

F3 = A' B C + A B' C' + A B C'

A B C F0 F1 F2 F3A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1

ROM
8 words x 4 bits/word

0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0 address outputs

A B C F0F1F2F3

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

truth table

1 1 1 0 1 0 0

block diagram

address outputs

ROM structure

S f Similar to a PLA structure but with a fully decoded AND array
 completely flexible OR array (unlike PAL)

n address lines

• • •

i tinputs

memory
decoder 2n word

lines

array
(2n words
by m bits)

• • •

outputs

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

m data lines

ROM vs. PLA

ROM h d t h ROM approach advantageous when
 design time is short (no need to minimize output functions)
 most input combinations are needed (e.g., code converters)p (g ,)
 little sharing of product terms among output functions

 ROM problems
i d bl f h dditi l i t size doubles for each additional input

 can't exploit don't cares
 PLA approach advantageous whenpp g

 design tools are available for multi-output minimization
 there are relatively few unique minterm combinations

many minterms are shared among the output functions many minterms are shared among the output functions
 PAL problems

 constrained fan-ins on OR plane

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

p

Regular logic structures for two-level logic

ROM f ll AND l l OR l ROM – full AND plane, general OR plane
 cheap (high-volume component)
 can implement any function of n inputsp y p
 medium speed

 PAL – programmable AND plane, fixed OR plane
i t di t t intermediate cost

 can implement functions limited by number of terms
 high speed (only one programmable plane that is much smaller than

ROM's decoder)
 PLA – programmable AND and OR planes

 most expensive (most complex in design, need more sophisticated tools) most expensive (most complex in design, need more sophisticated tools)
 can implement any function up to a product term limit
 slow (two programmable planes)

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Regular logic structures for multi-level logic

ff f Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates
 efficiency/speed concerns for such a structure efficiency/speed concerns for such a structure
 in 467 you'll learn about field programmable gate arrays (FPGAs)

that are just such programmable multi-level structures
 programmable multiplexers for wiring
 lookup tables for logic functions (programming fills in the table)
 multi-purpose cells (utilization is the big issue)p p (g)

 Use multiple levels of PALs/PLAs/ROMs
 output intermediate result
 make it an input to be used in further logic

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Combinational logic technology summary

R d l i Random logic
 Single gates or in groups
 conversion to NAND-NAND and NOR-NOR networks
 transition from simple gates to more complex gate building blocks
 reduced gate count, fan-ins, potentially faster
 more levels, harder to design

 Time response in combinational networks
 gate delays and timing waveforms
 hazards/glitches (what they are and why they happen)a a ds/g c es (a ey a e a d y ey appe)

 Regular logic
 multiplexers/decoders
 ROMs ROMs
 PLAs/PALs
 advantages/disadvantages of each

IV - Combinational Logic
Technologies © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

