
Sequential logic

S i l i i Sequential circuits
 simple circuits with feedback
 latches
 edge-triggered flip-flops

 Timing methodologies
di fli fl f ti cascading flip-flops for proper operation

 clock skew
 Asynchronous inputsy p

 metastability and synchronization
 Basic registers

shift registers shift registers
 simple counters

 Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Sequential circuits

C f Circuits with feedback
 outputs = f(inputs, past inputs, past outputs)
 basis for building "memory" into logic circuits basis for building memory into logic circuits
 door combination lock is an example of a sequential circuit

 state is memory

resetnew equal

 state is an "output" and an "input" to combinational logic
 combination storage elements are also memory

C1 C2 C3
value

multiplexer mux
control

comb. logic

comparator
control

clockstate

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

equal open/closed

Circuits with feedback

f ? How to control feedback?
 what stops values from cycling around endlessly

X1 Z1
X2
•
•

switching
network

Z1
Z2
•
•

•
Xn

•
Zn

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Simplest circuits with feedback

f Two inverters form a static memory cell
 will hold value as long as it has power applied

"0"

"1"

"stored value"
0

H l i h ll? How to get a new value into the memory cell?
 selectively break feedback path
 load new value into cell

"remember"

"load"
"data" "stored value"

 load new value into cell

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

data

Memory with cross-coupled gates

C l d NOR t Cross-coupled NOR gates
 similar to inverter pair, with capability to force output to 0 (reset=1)

or 1 (set=1)
R Q

R
Q

S Q'S

C l d NAND t Cross-coupled NAND gates
 similar to inverter pair, with capability to force output to 0 (reset=0)

or 1 (set=0)

R'
S'

Q
QS'

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

R Q'R'

Timing behavior

R Q

S Q'

Reset Hold Set SetReset Race100Reset Hold Set SetReset Race

R

100

S

Q

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 6

₩Q

State behavior or R-S latch
R Q

f S

S

Q

Q'

 Truth table of R-S latch behavior

Q Q'
0 1

Q Q'
1 0

S R Q
0 0 hold
0 1 0

0 1 1 0

0 1 0
1 0 1
1 1 unstable

Q Q'
0 0

Q Q'
1 1

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

Theoretical R-S latch behavior
R Q

S

Q

Q'

Q Q' Q Q'

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

Q Q'
0 1

Q Q'
1 0

SR=01

SR=01 SR=10

SR 11
 State diagram

 states: possible values
Q Q'
0 0SR=11 SR=11

SR=11

 transitions: changes
based on inputs SR=00

SR=11SR=00

SR=11 SR=11

SR 10SR=01

Q Q'
1 1

SR=10SR=01

possible oscillation
between states 00 and 11

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

1 1

Observed R-S latch behavior
R Q

ff S

S

Q

Q'

 Very difficult to observe R-S latch in the 1-1 state
 one of R or S usually changes first

 Ambiguously returns to state 0 1 or 1 0 Ambiguously returns to state 0-1 or 1-0
 a so-called "race condition"
 or non-deterministic transition

Q Q' Q Q'

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

0 1 1 0
SR=01 SR=10

SR=11

Q Q'
0 0SR=11 SR=11

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

SR=00SR=00

R-S latch analysis

B k f db k th

Q(t)

 Break feedback path

R Q

Q(t+)

R
S

S Q'

S R Q(t) Q(t+)
0 0 0 0

hold S
0 0 1 1
0 1 0 0
0 1 1 0

hold

reset
0 0

1 0

X 1

X 1Q(t)

S

1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

set

not allowed characteristic equation

R

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

1 1 1 X Q(t+) = S + R’ Q(t)

Activity: R-S latch using NAND gates

R’ Q'
Q(t)

S’ Q R’
S’

S

S R S’ R’ Q(t) Q(t+)
0 0 1 1 0 0

hold
0 0

1 0

X 1

X 1Q(t)

S
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0

hold

reset

characteristic equation

R
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

set

not allowed

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Q(t+) = S + R’ Q(t)1 1 0 0 1 X

Gated R-S latch

C
Q

R' R
 Control when R and

S inputs matter
 otherwise the

enable'

S'
Q'

S

 otherwise, the
slightest glitch on
R or S while
enable is low couldenable is low could
cause
change in value
t d

Set Reset
100stored

S'

'

100

R'

enable'

Q

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Q'

Clocks

 Used to keep time
 wait long enough for inputs (R' and S') to settle
 then allow to have effect on value stored then allow to have effect on value stored

 Clocks are regular periodic signals
 period (time between ticks)p ()
 duty-cycle (time clock is high between ticks - expressed as % of

period)

duty cycle (in this case, 50%)

period

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Clocks (cont’d)

C S Controlling an R-S latch with a clock
 can't let R and S change while clock is active (allowing R and S to

pass)pass)
 only have half of clock period for signal changes to propagate
 signals must be stable for the other half of clock period

R’ R

clock’

Q
R’ R

S’
Q’

S

R’ and S’

changing stable changing stablestable

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

clock’

Cascading latches

C f f Connect output of one latch to input of another
 How to stop changes from racing through chain?

 need to be able to control flow of data from one latch to the next need to be able to control flow of data from one latch to the next
 move one latch per clock period
 have to worry about logic between latches (arrows) that is too fasty g ()

R

S Q

Q’ R

S Q

Q’R

S

clock

S Q S QS

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Master-slave structure

f () Break flow by alternating clocks (like an air-lock)
 use positive clock to latch inputs into one R-S latch
 use negative clock to change outputs with another R-S latch use negative clock to change outputs with another R-S latch

 View pair as one basic unit
 master-slave flip-flopp p
 twice as much logic
 output changes a few gate delays after the falling edge of clock

b t d t ff t d d fli flbut does not affect any cascaded flip-flops
master stage slave stage

P’
R Q’ R Q’R

P
S Q

Q

S Q

Q

S

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

CLK

The 1s catching problem

f S f In first R-S stage of master-slave FF
 0-1-0 glitch on R or S while clock is high is "caught" by master stage
 leads to constraints on logic to be hazard-free leads to constraints on logic to be hazard-free

master stage slave stage
P’R Q’ R Q’R

Set
1s

catchReset
P

CLK

R

S Q

Q R

S Q

QR

S

S
R

CLKCLK
P
P’
Q

Master
Outputs

Sl

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Q
Q’

Slave
Outputs

D flip-flop

S f Make S and R complements of each other
 eliminates 1s catching problem
 can't just hold previous value can t just hold previous value

(must have new value ready every clock period)
 value of D just before clock goes low is what is stored in flip-flop
 can make R-S flip-flop by adding logic to make D = S + R’ Q

master stage slave stage

P’

D Q

Q’P’
R

S Q

Q’ R

S Q

Q’

P

CLK

S Q S Q

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

10 gates

Edge-triggered flip-flops

D’

 More efficient solution: only 6 gates
 sensitive to inputs only near edge of clock signal (not while high)

0

D D

negative edge-triggered D
flip-flop (D-FF)

holds D’ when
clock goes low

Q
R

0 p p ()

4-5 gate delays

must respect setup and hold time
Clk=1

S
Q’

constraints to successfully
capture input

0

D’ characteristic equation

holds D when
clock goes low

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

D D’ characteristic equation
Q(t+1) = D

Edge-triggered flip-flops (cont’d)

S
D’ D

 Step-by-step analysis
D’ D

R

D’

R

D’

Q

Clk=0

Q

Clk=0

S

D

S

D

D D’ new D D’

new D  old D

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

when clock goes high-to-low
data is latched

when clock is low
data is held

new D  old D

Edge-triggered flip-flops (cont’d)

 Positive edge-triggered
 inputs sampled on rising edge; outputs change after rising edge

 Negative edge triggered flip flops Negative edge-triggered flip-flops
 inputs sampled on falling edge; outputs change after falling edge

D

100

positive edge-triggered FF

D
CLK

Qpos
Qpos’ p g gg

negative edge-triggered FF

Qpos
Qneg
Qneg’

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Timing methodologies

f Rules for interconnecting components and clocks
 guarantee proper operation of system when strictly followed

 Approach depends on building blocks used for memory Approach depends on building blocks used for memory
elements
 we'll focus on systems with edge-triggered flip-flops

 found in programmable logic devices
 many custom integrated circuits focus on level-sensitive latches
B i l f t ti i Basic rules for correct timing:
 (1) correct inputs, with respect to time, are provided to the flip-

flopsp
 (2) no flip-flop changes state more than once per clocking event

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Timing methodologies (cont’d)

f f Definition of terms
 clock: periodic event, causes state of memory element to change

can be rising edge or falling edge or high level or low level
 setup time: minimum time before the clocking event by which the

input must be stable (Tsu)
 hold time: minimum time after the clocking event until which the

Tsu Th
data

D Q D Q

 hold time: minimum time after the clocking event until which the
input must remain stable (Th)

input

clock clock

there is a timing "window"
around the clocking event
during which the input must

data
changingstable

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

g p
remain stable and unchanged
in order to be recognized

clock

Comparison of latches and flip-flops

D Q

CLK DCLK

positive
edge-triggered

flip-flop

D

CLKflip flop

Qedge

D Q
G

CLK

Qlatch

behavior is the same unless input changes

CLK

transparent
(level-sensitive)

latch

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

behavior is the same unless input changes
while the clock is high

Comparison of latches and flip-flops (cont’d)

Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latchlatch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)atc (su/ a ou d a g o c oc edge (c e e s ate)

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clockflip flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge triggered (Tsu/Th around falling of clockedge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Typical timing specifications

P i i d i d D fli fl Positive edge-triggered D flip-flop
 setup and hold times
 minimum clock width
 propagation delays (low to high, high to low, max and typical)

T T

T su
1.8

T h
0.5

D

T su
1.8
ns

T h
0.5
ns

T

8
ns

0 5
ns

T

Clk

T w
3.3
ns

T

T w
3.3
ns

Q T pd
3.6 ns
1 1

T pd
3.6 ns
1.1 ns

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

all measurements are made from the clocking event (the rising edge of the clock)
1.1 ns

Cascading edge-triggered flip-flops

S f Shift register
 new value goes into first stage
 while previous value of first stage goes into second stage while previous value of first stage goes into second stage
 consider setup/hold/propagation delays (prop must be > hold)

IN
Q0 Q1

D Q D Q OUTIN D Q D Q OUT

IN

100CLK

Q0

Q1

CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

CLK

Cascading edge-triggered flip-flops (cont’d)

 Why this works
 propagation delays exceed hold times
 clock width constraint exceeds setup time clock width constraint exceeds setup time
 this guarantees following stage will latch current value before it

changes to new value

timing constraints
guarantee proper

Tsu
1.8ns

In

Q0

Tsu
1.8ns g p p

operation of
cascaded componentsTp

1.1-3.6ns

Q0

Q1

Tp
1.1-3.6ns

assumes infinitely fast
distribution of the clock

T

CLK

T

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Th
0.5ns

Th
0.5ns

Clock skew

 The problem
 correct behavior assumes next state of all storage elements

determined by all storage elements at the same timedetermined by all storage elements at the same time
 this is difficult in high-performance systems because time for clock

to arrive at flip-flop is comparable to delays through logic
ff f k d d fli fl

CLK1 is a delayed
In

100
 effect of skew on cascaded flip-flops:

CLK1 is a delayed
version of CLK0Q0

Q1
CLK0

original state: IN 0 Q0 1 Q1 1

CLK1

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

Summary of latches and flip-flops

D l f D FF Development of D-FF
 level-sensitive used in custom integrated circuits

 can be made with 4 switches
 edge-triggered used in programmable logic devices
 good choice for data storage register

 Historically J K FF was popular but now never used Historically J-K FF was popular but now never used
 similar to R-S but with 1-1 being used to toggle output (complement state)
 good in days of TTL/SSI (more complex input function: D = J Q’ + K’ Q
 not a good choice for PALs/PLAs as it requires 2 inputs
 can always be implemented using D-FF

 Preset and clear inputs are highly desirable on flip-flops Preset and clear inputs are highly desirable on flip flops
 used at start-up or to reset system to a known state

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Metastability and asynchronous inputs

C Clocked synchronous circuits
 inputs, state, and outputs sampled or changed in relation to a

common reference signal (called the clock)common reference signal (called the clock)
 e.g., master/slave, edge-triggered

 Asynchronous circuits
 inputs, state, and outputs sampled or changed independently of a

common reference signal (glitches/hazards a major concern)
 e g R S latch e.g., R-S latch

 Asynchronous inputs to synchronous circuits
 inputs can change at any time, will not meet setup/hold timesp g y , p
 dangerous, synchronous inputs are greatly preferred
 cannot be avoided (e.g., reset signal, memory wait, user input)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

Synchronization failure

O Occurs when FF input changes close to clock edge
 the FF may enter a metastable state – neither a logic 0 nor 1 –
 it may stay in this state an indefinite amount of time

logic 1

 it may stay in this state an indefinite amount of time
 this is not likely in practice but has some probability

small but non-zero probability oscilloscope traces demonstrating

logic 0 logic 1
logic 0

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

small, but non-zero probability
that the FF output will get stuck

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

Dealing with synchronization failure

P b bili f f il b d d 0 b i b d d Probability of failure can never be reduced to 0, but it can be reduced
 (1) slow down the system clock

this gives the synchronizer more time to decay into a steady state;
synchronizer failure becomes a big problem for very high speed systems

 (2) use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

 (3) cascade two synchronizers
this effectively synchronizes twice (both would have to fail)

D DQ Q
asynchronous

input
synchronized

inputQinput input

h t

Clk

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

synchronous system

Handling asynchronous inputs

N ll h i f h fli fl Never allow asynchronous inputs to fan-out to more than one flip-flop
 synchronize as soon as possible and then treat as synchronous signal

Clocked
Synchronous

System

Synchronizer

D Q
Q0Async

Input
D Q

Q0

Cl k

Async
Input D Q

System

D Q

Clock

Q1 D Q

Clock

Q1

Clock Clock

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Handling asynchronous inputs (cont’d)

? What can go wrong?
 input changes too close to clock edge (violating setup time

constraint)constraint)

In is asynchronous and
fans out to D0 and D1

In

Q0
one FF catches the
signal, one does not

inconsistent state may

Q0

Q1 inconsistent state may
be reached!

CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Flip-flop features

R (0) R Reset (set state to 0) – R
 synchronous: Dnew = R' • Dold (when next clock edge arrives)
 asynchronous: doesn't wait for clock, quick but dangerousy , q g

 Preset or set (set state to 1) – S (or sometimes P)
 synchronous: Dnew = Dold + S (when next clock edge arrives)

h d 't it f l k i k b t d asynchronous: doesn't wait for clock, quick but dangerous
 Both reset and preset

 Dnew = R' • Dold + S (set-dominant)()
 Dnew = R' • Dold + R'S (reset-dominant)

 Selective input capability (input enable or load) – LD or EN
multiplexor at input: Dnew = LD' Q + LD Dold multiplexor at input: Dnew = LD' • Q + LD • Dold

 load may or may not override reset/set (usually R/S have priority)
 Complementary outputs – Q and Q'

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Registers

C f f f Collections of flip-flops with similar controls and logic
 stored values somehow related (for example, form binary value)
 share clock reset and set lines share clock, reset, and set lines
 similar logic at each stage

 Examples

OUT1 OUT2 OUT3 OUT4

p
 shift registers
 counters

R S R S R S
D Q D Q D Q D Q

R S

"0"

D Q D Q D Q D Q

CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

IN1 IN2 IN3 IN4

Shift register

f Holds samples of input
 store last 4 input values in sequence
 4-bit shift register:

OUT1 OUT2 OUT3 OUT4

 4-bit shift register:

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Universal shift register

H ld 4 l Holds 4 values
 serial or parallel inputs
 serial or parallel outputsp p
 permits shift left or right
 shift in new values from left or right

clear sets the register contents
and output to 0

f

output

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state

left_in
left_out

right_out

clear
right_in

s0
s1

clock
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

input

s1

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Design of universal shift register

clear s0 s1 new valueC id f h f fli fl clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)

 Consider one of the four flip-flops
 new value at next clock cycle:

Nth cell

0 1 0 output value of FF to right (shift left)
0 1 1 input

D
Q

CLK

to N-1th
cell

to N+1th
cell

CLK

CLEAR

Q[N 1] Q[N 1]

s0 and s1
control mux0 1 2 3

CLEAR

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Q[N-1]
(left)

Q[N+1]
(right)

Input[N]

Shift register application

f

ll l t t

 Parallel-to-serial conversion for serial transmission

parallel outputs

parallel inputs

serial transmission

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Pattern recognizer

C f f Combinational function of input samples
 in this case, recognizing the pattern 1001 on the single input

signal

OUT

signal

OUT1 OUT2 OUT3 OUT4

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLKCLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

Counters

S f f Sequences through a fixed set of patterns
 in this case, 1000, 0100, 0010, 0001
 if one of the patterns is its initial state (by loading or set/reset)

OUT1 OUT2 OUT3 OUT4

 if one of the patterns is its initial state (by loading or set/reset)

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLKCLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Activity

? How does this counter work?

OUT1 OUT2 OUT3 OUT4

D Q D Q D Q D QIN

CLK

 Counts through the sequence: 1000 1100 1110 1111 0111 0011 0001 0000 Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

 Known as Mobius (or Johnson) counter

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

Binary counter

() Logic between registers (not just multiplexer)
 XOR decides when bit should be toggled
 always for low-order bit always for low-order bit,

only when first bit is true for second bit,
and so on

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

1

Four-bit binary synchronous up-counter

S d d i h li i Standard component with many applications
 positive edge-triggered FFs w/ synchronous load and clear inputs
 parallel load data from D, C, B, A

EN

D

p , , ,
 enable inputs: must be asserted to enable counting
 RCO: ripple-carry out used for cascading counters

 high when counter is in its highest state 1111 C
B
A
LOAD

RCO
QD
QC
QB

(2) RCO goes high

 high when counter is in its highest state 1111
 implemented using an AND gate

CLK
CLR

Q
QA

(3) High order 4-bits

(1) Low order 4-bits = 1111

are incremented

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Offset counters

St ti ff t t f h l d EN

D
C
B

RCO
QD
QC
QB

"1"

"0"
"1"
"1"

 Starting offset counters – use of synchronous load
 e.g., 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1111, 0110, . . .

"0"

B
A
LOAD
CLK
CLR

QB
QA

"1"
"0"

0 CLR

 Ending offset counter – comparator for ending value
 e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

EN

D
C
B

RCO
QD
QC
QB

"1"

"0"
"0"
"0"

g , , , , , , ,

B
A
LOAD
CLK
CLR

QB
QA

0
"0"

 Combinations of the above (start and stop value)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Hardware Description Languages and Sequential
Logic

f Flip-flops
 representation of clocks - timing of state changes
 asynchronous vs synchronous asynchronous vs. synchronous

 Shift registers
 Simple countersSimple counters

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 48

Flip-flop in Verilog

f Use always block's sensitivity list to wait for clock edge

module dff (clk, d, q);

input clk, d;
output q;
reg q;

l @(d lk)always @(posedge clk)
q = d;

endmoduleendmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 49

More Flip-flops

S / / Synchronous/asynchronous reset/set
 single thread that waits for the clock
 three parallel threads – only one of which waits for the clock three parallel threads – only one of which waits for the clock

Synchronous Asynchronous

module dff (clk, s, r, d, q);
input clk, s, r, d;
output q;
reg q;

module dff (clk, s, r, d, q);
input clk, s, r, d;
output q;
reg q;g q

always @(posedge clk)
if (r) q = 1'b0;
else if (s) q = 1'b1;

g q

always @(posedge r)
q = 1'b0;

always @(posedge s)() q
else q = d;

endmodule

y (p g)
q = 1'b1;

always @(posedge clk)
q = d;

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 50

endmodule

Incorrect Flip-flop in Verilog

f Use always block's sensitivity list to wait for clock to change

module dff (clk, d, q);

input clk, d;
output q;
reg q;

l @(lk)

Not correct! Q will
change whenever the
clock changes, not
just on an edge.

always @(clk)
q = d;

endmoduleendmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 51

Blocking and Non-Blocking Assignments

 Blocking assignments (X=A) Blocking assignments (X=A)
 completes the assignment before continuing on to next statement

 Non-blocking assignments (X<=A)Non blocking assignments (X A)
 completes in zero time and doesn’t change the value of the target

until a blocking point (delay/wait) is encountered
 Example: swap

always @(posedge CLK)
begin

temp = B;
B = A;

always @(posedge CLK)
begin

A <= B;
B <= A;

A = temp;
end

end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 52

Register-transfer-level (RTL) Assignment

 Non-blocking assignment is also known as an RTL assignment
 if used in an always block triggered by a clock edge
 all flip-flops change together all flip-flops change together

// B,C,D all get the value of A// ,C, a get t e a ue o
always @(posedge clk)

begin
B = A;
C = B;;
D = C;

end
// implements a shift register too
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 53

end

Mobius Counter in Verilog

initialinitial
begin

A = 1’b0;
B = 1’b0;
C = 1’b0;C = 1’b0;
D = 1’b0;

end

always @(posedge clk)always @(posedge clk)
begin

A <= ~D;
B <= A;
C <= B;C <= B;
D <= C;

end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 54

Binary Counter in Verilog

d l bi t (lk 8 4 2 1)module binary_counter (clk, c8, c4, c2, c1);

input clk;
output c8, c4, c2, c1;

module binary_counter (clk, c8, c4, c2, c1, rco);

reg [3:0] count;

initial begin

input clk;
output c8, c4, c2, c1, rco;

reg [3:0] count;
count = 0;

end

always @(posedge clk) begin

g [] ;
reg rco;

initial begin . . . end

count = count + 4’b0001;
end

assign c8 = count[3];

always @(posedge clk) begin . . . end

assign c8 = count[3];
assign c4 = count[2];

assign c4 = count[2];
assign c2 = count[1];
assign c1 = count[0];

assign c4 count[2];
assign c2 = count[1];
assign c1 = count[0];
assign rco = (count == 4b’1111);

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 55

endmodule
endmodule

Sequential logic summary

F d l b ildi bl k f i i i h Fundamental building block of circuits with state
 latch and flip-flop
 R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop, , , g gg p p

 Timing methodologies
 use of clocks

d d FF k b ti d l d h ld ti cascaded FFs work because propagation delays exceed hold times
 beware of clock skew

 Asynchronous inputs and their dangersy p g
 synchronizer failure: what it is and how to minimize its impact

 Basic registers
shift registers shift registers

 counters
 Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 56

