
Sequential logic

S i l i i Sequential circuits
 simple circuits with feedback
 latches
 edge-triggered flip-flops

 Timing methodologies
di fli fl f ti cascading flip-flops for proper operation

 clock skew
 Asynchronous inputsy p

 metastability and synchronization
 Basic registers

shift registers shift registers
 simple counters

 Hardware description languages and sequential logic
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Sequential circuits

C f Circuits with feedback
 outputs = f(inputs, past inputs, past outputs)
 basis for building "memory" into logic circuits basis for building memory  into logic circuits
 door combination lock is an example of a sequential circuit

 state is memory

resetnew equal

 state is an "output" and an "input" to combinational logic
 combination storage elements are also memory

C1 C2 C3
value

multiplexer mux 
control

comb. logic

comparator
control

clockstate
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Circuits with feedback

f ? How to control feedback?
 what stops values from cycling around endlessly

X1 Z1
X2
•
•

switching
network

Z1
Z2
•
•

•
Xn

•
Zn
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Simplest circuits with feedback

f Two inverters form a static memory cell
 will hold value as long as it has power applied

"0"

"1"

"stored value"
0

H l i h ll? How to get a new value into the memory cell?
 selectively break feedback path
 load new value into cell

"remember"

"load"
"data" "stored value"

 load new value into cell
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Memory with cross-coupled gates

C l d NOR t Cross-coupled NOR gates
 similar to inverter pair, with capability to force output to 0 (reset=1) 

or 1 (set=1)
R Q

R
Q

S Q'S

C l d NAND t Cross-coupled NAND gates
 similar to inverter pair, with capability to force output to 0 (reset=0) 

or 1 (set=0)

R'
S'

Q
QS'
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Timing behavior

R Q

S Q'

Reset Hold Set SetReset Race100Reset Hold Set SetReset Race

R

100

S

Q
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State behavior or R-S latch
R Q

f S

S

Q

Q'

 Truth table of R-S latch behavior

Q Q'
0 1

Q Q'
1 0

S R Q
0 0 hold
0 1 0

0  1 1  0

0 1 0
1 0 1
1 1 unstable

Q Q'
0  0

Q Q'
1  1
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Theoretical R-S latch behavior
R Q

S

Q

Q'

Q Q' Q Q'

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

Q Q'
0  1

Q Q'
1  0

SR=01

SR=01 SR=10

SR 11
 State diagram

 states: possible values
Q Q'
0  0SR=11 SR=11

SR=11

 transitions: changes
based on inputs SR=00

SR=11SR=00

SR=11 SR=11

SR 10SR=01

Q Q'
1 1

SR=10SR=01 

possible oscillation
between states 00 and 11
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Observed R-S latch behavior
R Q

ff S

S

Q

Q'

 Very difficult to observe R-S latch in the 1-1 state
 one of R or S usually changes first

 Ambiguously returns to state 0 1 or 1 0 Ambiguously returns to state 0-1 or 1-0
 a so-called "race condition"
 or non-deterministic transition

Q Q' Q Q'

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

0  1 1  0
SR=01 SR=10

SR=11

Q Q'
0  0SR=11 SR=11
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R-S latch analysis

B k f db k th

Q(t)

 Break feedback path

R Q

Q(t+)

R
S

S Q'

S R Q(t) Q(t+)
0 0 0 0

hold S
0 0 1 1
0 1 0 0
0 1 1 0

hold

reset
0 0

1 0

X 1

X 1Q(t)

S

1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

set

not allowed characteristic equation

R
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Activity: R-S latch using NAND gates

R’ Q'
Q(t)

S’ Q R’
S’

S

S R S’ R’ Q(t) Q(t+)
0 0 1 1 0 0

hold
0 0

1 0

X 1

X 1Q(t)

S
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0

hold

reset

characteristic equation

R
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

set

not allowed
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Gated R-S latch

C
Q

R' R
 Control when R and 

S inputs matter
 otherwise the

enable'

S'
Q'

S

 otherwise, the 
slightest glitch on 
R or S while 
enable is low couldenable is low could 
cause 
change in value 
t d

Set Reset
100stored

S'

'

100

R'

enable'

Q
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Clocks

 Used to keep time
 wait long enough for inputs (R' and S') to settle
 then allow to have effect on value stored then allow to have effect on value stored

 Clocks are regular periodic signals
 period (time between ticks)p ( )
 duty-cycle (time clock is high between ticks - expressed as % of 

period)

duty cycle (in this case, 50%)

period
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Clocks (cont’d)

C S Controlling an R-S latch with a clock
 can't let R and S change while clock is active (allowing R and S to 

pass)pass)
 only have half of clock period for signal changes to propagate
 signals must be stable for the other half of clock period

R’ R

clock’

Q
R’ R

S’
Q’

S

R’  and  S’

changing stable changing stablestable
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Cascading latches

C f f Connect output of one latch to input of another
 How to stop changes from racing through chain?

 need to be able to control flow of data from one latch to the next need to be able to control flow of data from one latch to the next
 move one latch per clock period
 have to worry about logic between latches (arrows) that is too fasty g ( )

R

S Q

Q’ R

S Q

Q’R

S

clock

S Q S QS
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Master-slave structure

f ( ) Break flow by alternating clocks (like an air-lock)
 use positive clock to latch inputs into one R-S latch
 use negative clock to change outputs with another R-S latch use negative clock to change outputs with another R-S latch

 View pair as one basic unit
 master-slave flip-flopp p
 twice as much logic
 output changes a few gate delays after the falling edge of clock 

b t d t ff t d d fli flbut does not affect any cascaded flip-flops
master stage slave stage

P’
R Q’ R Q’R

P
S Q

Q

S Q

Q

S
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The 1s catching problem

f S f In first R-S stage of master-slave FF
 0-1-0 glitch on R or S while clock is high is "caught" by master stage
 leads to constraints on logic to be hazard-free leads to constraints on logic to be hazard-free

master stage slave stage
P’R Q’ R Q’R

Set
1s 

catchReset
P

CLK

R

S Q

Q R

S Q

QR

S

S
R

CLKCLK
P
P’
Q

Master
Outputs

Sl
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Q
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Slave
Outputs



D flip-flop

S f Make S and R complements of each other
 eliminates 1s catching problem
 can't just hold previous value can t just hold previous value

(must have new value ready every clock period)
 value of D just before clock goes low is what is stored in flip-flop
 can make R-S flip-flop by adding logic to make D = S + R’ Q

master stage slave stage

P’

D Q

Q’P’
R

S Q

Q’ R

S Q

Q’

P

CLK

S Q S Q
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Edge-triggered flip-flops

D’

 More efficient solution: only 6 gates
 sensitive to inputs only near edge of clock signal (not while high)

0

D D

negative edge-triggered D 
flip-flop (D-FF)

holds D’ when
clock goes low

Q
R

0 p p ( )

4-5 gate delays

must respect setup and hold time 
Clk=1

S
Q’

constraints to successfully
capture input

0

D’ characteristic equation

holds D when
clock goes low
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D D’ characteristic equation
Q(t+1) = D



Edge-triggered flip-flops (cont’d)

S
D’ D

 Step-by-step analysis
D’ D

R

D’

R

D’

Q

Clk=0

Q

Clk=0

S

D

S

D

D D’ new D D’

new D  old D
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when clock goes high-to-low
data is latched

when clock is low
data is held

new D  old D



Edge-triggered flip-flops (cont’d)

 Positive edge-triggered
 inputs sampled on rising edge; outputs change after rising edge

 Negative edge triggered flip flops Negative edge-triggered flip-flops
 inputs sampled on falling edge; outputs change after falling edge

D

100

positive edge-triggered FF

D
CLK

Qpos
Qpos’ p g gg

negative edge-triggered FF

Qpos
Qneg
Qneg’
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Timing methodologies

f Rules for interconnecting components and clocks
 guarantee proper operation of system when strictly followed

 Approach depends on building blocks used for memory Approach depends on building blocks used for memory 
elements
 we'll focus on systems with edge-triggered flip-flops

 found in programmable logic devices
 many custom integrated circuits focus on level-sensitive latches
B i l f t ti i Basic rules for correct timing:
 (1) correct inputs, with respect to time, are provided to the flip-

flopsp
 (2) no flip-flop changes state more than once per clocking event
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Timing methodologies (cont’d)

f f Definition of terms
 clock: periodic event, causes state of memory element to change

can be rising edge or falling edge or high level or low level
 setup time: minimum time before the clocking event by which the

input must be stable (Tsu)
 hold time: minimum time after the clocking event until which the

Tsu Th
data

D Q D Q

 hold time: minimum time after the clocking event until which the
input must remain stable (Th)

input

clock clock

there is a timing "window" 
around the clocking event 
during which the input must 

data
changingstable
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g p
remain stable and unchanged 
in order to be recognized

clock



Comparison of latches and flip-flops

D Q

CLK DCLK

positive
edge-triggered

flip-flop

D

CLKflip flop

Qedge

D Q
G

CLK

Qlatch

behavior is the same unless input changes

CLK

transparent
(level-sensitive)

latch
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behavior is the same unless input changes
while the clock is high



Comparison of latches and flip-flops (cont’d)

Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latchlatch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)atc ( su/ a ou d a g o c oc edge ( c e e s ate )

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clockflip flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge triggered (Tsu/Th around falling of clockedge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)
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Typical timing specifications

P i i d i d D fli fl Positive edge-triggered D flip-flop
 setup and hold times
 minimum clock width
 propagation delays (low to high, high to low, max and typical)

T T

T su 
1.8

T h 
0.5 

D 

T su 
1.8
ns 

T h 
0.5
ns 

T

8
ns 

0 5
ns 

T

Clk 

T w 
3.3 
ns 

T

T w 
3.3 
ns 

Q T pd
3.6 ns 
1 1

T pd
3.6 ns 
1.1 ns 
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all measurements are made from the clocking event (the rising edge of the clock)
1.1 ns 



Cascading edge-triggered flip-flops

S f Shift register
 new value goes into first stage
 while previous value of first stage goes into second stage while previous value of first stage goes into second stage
 consider setup/hold/propagation delays (prop must be > hold)

IN
Q0 Q1

D Q D Q OUTIN D Q D Q OUT

IN

100CLK

Q0

Q1

CLK
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Cascading edge-triggered flip-flops (cont’d)

 Why this works
 propagation delays exceed hold times
 clock width constraint exceeds setup time clock width constraint exceeds setup time
 this guarantees following stage will latch current value before it 

changes to new value

timing constraints
guarantee proper

Tsu
1.8ns

In

Q0

Tsu
1.8ns g p p

operation of
cascaded componentsTp

1.1-3.6ns

Q0

Q1

Tp
1.1-3.6ns

assumes infinitely fast 
distribution of the clock

T

CLK

T
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0.5ns
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0.5ns



Clock skew

 The problem
 correct behavior assumes next state of all storage elements

determined by all storage elements at the same timedetermined by all storage elements at the same time
 this is difficult in high-performance systems because time for clock

to arrive at flip-flop is comparable to delays through logic
ff f k d d fli fl

CLK1 is a delayed
In

100
 effect of skew on cascaded flip-flops:

CLK1 is a delayed
version of CLK0Q0

Q1
CLK0

original state: IN 0 Q0 1 Q1 1

CLK1
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original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1



Summary of latches and flip-flops

D l f D FF Development of D-FF
 level-sensitive used in custom integrated circuits

 can be made with 4 switches
 edge-triggered used in programmable logic devices
 good choice for data storage register

 Historically J K FF was popular but now never used Historically J-K FF was popular but now never used
 similar to R-S but with 1-1 being used to toggle output (complement state)
 good in days of TTL/SSI (more complex input function: D = J Q’ + K’ Q
 not a good choice for PALs/PLAs as it requires 2 inputs
 can always be implemented using D-FF

 Preset and clear inputs are highly desirable on flip-flops Preset and clear inputs are highly desirable on flip flops
 used at start-up or to reset system to a known state
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Metastability and asynchronous inputs

C Clocked synchronous circuits
 inputs, state, and outputs sampled or changed in relation to a

common reference signal (called the clock)common reference signal (called the clock)
 e.g., master/slave, edge-triggered

 Asynchronous circuits
 inputs, state, and outputs sampled or changed independently of a

common reference signal (glitches/hazards a major concern)
 e g R S latch e.g., R-S latch

 Asynchronous inputs to synchronous circuits
 inputs can change at any time, will not meet setup/hold timesp g y , p
 dangerous, synchronous inputs are greatly preferred
 cannot be avoided (e.g., reset signal, memory wait, user input)
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Synchronization failure

O Occurs when FF input changes close to clock edge
 the FF may enter a metastable state – neither a logic 0 nor 1 –
 it may stay in this state an indefinite amount of time

logic 1

 it may stay in this state an indefinite amount of time
 this is not likely in practice but has some probability

small but non-zero probability oscilloscope traces demonstrating

logic 0 logic 1
logic 0
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small, but non-zero probability 
that the FF output will get stuck 

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state



Dealing with synchronization failure

P b bili f f il b d d 0 b i b d d Probability of failure can never be reduced to 0, but it can be reduced
 (1)  slow down the system clock 

this gives the synchronizer more time to decay into a steady state; 
synchronizer failure becomes a big problem for very high speed systems

 (2)  use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

 (3) cascade two synchronizers 
this effectively synchronizes twice (both would have to fail)

D DQ Q
asynchronous

input
synchronized

inputQinput input

h t

Clk
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Handling asynchronous inputs

N ll h i f h fli fl Never allow asynchronous inputs to fan-out to more than one flip-flop
 synchronize as soon as possible and then treat as synchronous signal

Clocked  
Synchronous 

System

Synchronizer

D Q
Q0Async 

Input
D Q

Q0

Cl k

Async 
Input D Q

System

D Q

Clock

Q1 D Q

Clock

Q1

Clock Clock
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Handling asynchronous inputs (cont’d)

? What can go wrong?
 input changes too close to clock edge (violating setup time 

constraint)constraint)

In is asynchronous and 
fans out to D0 and D1

In

Q0
one FF catches the 
signal, one does not

inconsistent state may

Q0

Q1 inconsistent state may 
be reached!

CLK
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Flip-flop features

R ( 0) R Reset (set state to 0) – R
 synchronous: Dnew = R' • Dold (when next clock edge arrives)
 asynchronous: doesn't wait for clock, quick but dangerousy , q g

 Preset or set (set state to 1) – S (or sometimes P)
 synchronous: Dnew = Dold + S (when next clock edge arrives)

h d 't it f l k i k b t d asynchronous: doesn't wait for clock, quick but dangerous
 Both reset and preset

 Dnew = R' • Dold + S (set-dominant)( )
 Dnew = R' • Dold + R'S (reset-dominant)

 Selective input capability (input enable or load) – LD or EN
multiplexor at input: Dnew = LD' Q + LD Dold multiplexor at input: Dnew = LD' • Q + LD • Dold

 load may or may not override reset/set (usually R/S have priority)
 Complementary outputs – Q and Q'
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Registers

C f f f Collections of flip-flops with similar controls and logic
 stored values somehow related (for example, form binary value)
 share clock reset and set lines share clock, reset, and set lines
 similar logic at each stage

 Examples

OUT1 OUT2 OUT3 OUT4

p
 shift registers
 counters

R S R S R S
D Q D Q D Q D Q

R S

"0"

D Q D Q D Q D Q

CLK
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Shift register

f Holds samples of input
 store last 4 input values in sequence
 4-bit shift register:

OUT1 OUT2 OUT3 OUT4

 4-bit shift register:

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK
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Universal shift register

H ld 4 l Holds 4 values
 serial or parallel inputs
 serial or parallel outputsp p
 permits shift left or right
 shift in new values from left or right

clear sets the register contents
and output to 0

f

output

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state

left_in
left_out

right_out

clear
right_in

s0
s1

clock
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

input

s1
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Design of universal shift register

clear s0 s1 new valueC id f h f fli fl clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)

 Consider one of the four flip-flops
 new value at next clock cycle:

Nth cell

0 1 0 output value of FF to right (shift left)
0 1 1 input

D
Q

CLK

to N-1th 
cell

to N+1th 
cell

CLK

CLEAR

Q[N 1] Q[N 1]

s0 and s1
control mux0 1 2 3

CLEAR
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Q[N-1]
(left)

Q[N+1]
(right)

Input[N]



Shift register application

f

ll l t t

 Parallel-to-serial conversion for serial transmission

parallel outputs

parallel inputs

serial transmission
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Pattern recognizer

C f f Combinational function of input samples
 in this case, recognizing the pattern 1001 on the single input 

signal

OUT

signal

OUT1 OUT2 OUT3 OUT4

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLKCLK
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Counters

S f f Sequences through a fixed set of patterns
 in this case, 1000, 0100, 0010, 0001
 if one of the patterns is its initial state (by loading or set/reset)

OUT1 OUT2 OUT3 OUT4

 if one of the patterns is its initial state (by loading or set/reset)

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLKCLK
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Activity

? How does this counter work?

OUT1 OUT2 OUT3 OUT4

D Q D Q D Q D QIN

CLK

 Counts through the sequence: 1000 1100 1110 1111 0111 0011 0001 0000 Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

 Known as Mobius (or Johnson) counter
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Binary counter

( ) Logic between registers (not just multiplexer)
 XOR decides when bit should be toggled
 always for low-order bit always for low-order bit,

only when first bit is true for second bit,
and so on

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"
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Four-bit binary synchronous up-counter

S d d i h li i Standard component with many applications
 positive edge-triggered FFs w/ synchronous load and clear inputs
 parallel load data from D, C, B, A

EN

D

p , , ,
 enable inputs: must be asserted to enable counting
 RCO: ripple-carry out used for cascading counters

 high when counter is in its highest state 1111 C
B
A
LOAD

RCO
QD
QC
QB

(2) RCO goes high

 high when counter is in its highest state 1111
 implemented using an AND gate

CLK
CLR

Q
QA

(3) High order 4-bits 

(1) Low order 4-bits = 1111

are incremented

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 46



Offset counters

St ti ff t t f h l d EN

D
C
B

RCO
QD
QC
QB

"1"

"0"
"1"
"1"

 Starting offset counters – use of synchronous load
 e.g., 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1111, 0110, . . .

"0"

B
A
LOAD
CLK
CLR

QB
QA

"1"
"0"

0 CLR

 Ending offset counter – comparator for ending value
 e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

EN

D
C
B

RCO
QD
QC
QB

"1"

"0"
"0"
"0"

g , , , , , , ,

B
A
LOAD
CLK
CLR

QB
QA

0
"0"

 Combinations of the above (start and stop value)
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Hardware Description Languages and Sequential 
Logic

f Flip-flops
 representation of clocks - timing of state changes
 asynchronous vs synchronous asynchronous vs. synchronous

 Shift registers
 Simple countersSimple counters
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Flip-flop in Verilog

f Use always block's sensitivity list to wait for clock edge

module dff (clk, d, q);

input  clk, d;
output q;
reg    q;

l @( d lk)always @(posedge clk)
q = d;

endmoduleendmodule
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More Flip-flops

S / / Synchronous/asynchronous reset/set
 single thread that waits for the clock
 three parallel threads – only one of which waits for the clock three parallel threads – only one of which waits for the clock

Synchronous Asynchronous

module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg    q;

module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg    q;g q

always @(posedge clk)
if (r)      q = 1'b0;
else if (s) q = 1'b1;

g q

always @(posedge r)
q = 1'b0;

always @(posedge s)( ) q
else        q = d;

endmodule

y (p g )
q = 1'b1;

always @(posedge clk)
q = d;
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Incorrect Flip-flop in Verilog

f Use always block's sensitivity list to wait for clock to change

module dff (clk, d, q);

input  clk, d;
output q;
reg    q;

l @( lk)

Not correct!  Q will
change whenever the
clock changes, not
just on an edge.

always @(clk)
q = d;

endmoduleendmodule
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Blocking and Non-Blocking Assignments

 Blocking assignments (X=A) Blocking assignments (X=A)
 completes the assignment before continuing on to next statement

 Non-blocking assignments (X<=A)Non blocking assignments (X A)
 completes in zero time and doesn’t change the value of the target 

until a blocking point (delay/wait) is encountered
 Example: swap

always @(posedge CLK)
begin

temp = B;
B = A;

always @(posedge CLK)
begin

A <= B;
B <= A;

A = temp;
end

end
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Register-transfer-level (RTL) Assignment

 Non-blocking assignment is also known as an RTL assignment
 if used in an always block triggered by a clock edge
 all flip-flops change together all flip-flops change together

// B,C,D all get the value of A// ,C, a get t e a ue o
always @(posedge clk)

begin
B = A;
C = B;;
D = C;

end
// implements a shift register too
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;
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Mobius Counter in Verilog

initialinitial
begin

A = 1’b0;
B = 1’b0;
C = 1’b0;C = 1’b0;
D = 1’b0;

end

always @(posedge clk)always @(posedge clk)
begin

A <= ~D;
B <= A;
C <= B;C <= B;
D <= C;

end
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Binary Counter in Verilog

d l bi t ( lk 8 4 2 1)module binary_counter (clk, c8, c4, c2, c1);

input  clk;
output c8, c4, c2, c1;

module binary_counter (clk, c8, c4, c2, c1, rco);

reg [3:0] count;

initial begin

input  clk;
output c8, c4, c2, c1, rco;

reg [3:0] count;
count = 0;

end

always @(posedge clk) begin

g [ ] ;
reg rco;

initial begin . . . end

count = count + 4’b0001;
end

assign c8 = count[3];

always @(posedge clk) begin . . . end

assign c8 = count[3];
assign c4 = count[2];

assign c4 = count[2];
assign c2 = count[1];
assign c1 = count[0];

assign c4  count[2];
assign c2 = count[1];
assign c1 = count[0];
assign rco = (count == 4b’1111);
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endmodule
endmodule



Sequential logic summary

F d l b ildi bl k f i i i h Fundamental building block of circuits with state
 latch and flip-flop
 R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop, , , g gg p p

 Timing methodologies
 use of clocks

d d FF k b ti d l d h ld ti cascaded FFs work because propagation delays exceed hold times
 beware of clock skew

 Asynchronous inputs and their dangersy p g
 synchronizer failure: what it is and how to minimize its impact

 Basic registers
shift registers shift registers

 counters
 Hardware description languages and sequential logic
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