Sequential logic

Sequential circuits

o simple circuits with feedback

o latches

o edge-triggered flip-flops

Timing methodologies

o cascading flip-flops for proper operation
o clock skew

Asynchronous inputs

o metastability and synchronization
Basic registers

o shift registers

o simple counters

Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Sequential circuits

Circuits with feedback

o outputs = f(inputs, past inputs, past outputs)

o basis for building "memory" into logic circuits

o door combination lock is an example of a sequential circuit
state is memory

state is an "output" and an "input" to combinational logic

combination storage elements are also memory
new equal reset

value
Cl C2 C3
| | [\ 4 \ 4 A
multiplexer mux comb. logic
| control |
comparator state (< clock
equal M

open/closed

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Circuits with feedback

How to control feedback?
o what stops values from cycling around endlessly

Xl ——» 71
X2 —» —> /2
o switching .
° network o
Xn ——» — Zn

y

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Simplest circuits with feedback

Two inverters form a static memory cell
o will hold value as long as it has power applied

lllll

‘ E E ‘ "stored value"
IIOIl

How to get a new value into the memory cell?
o selectively break feedback path
o load new value into cell

"remember"
l'--.l

e "load” "stored value"
data" , rn

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Memory with cross-coupled gates

Cross-coupled NOR gates
o similar to inverter pair, with capability to force output to O (reset=1)

or 1 (set=1)

T

S

Cross-coupled NAND gates
o similar to inverter pair, with capabillity to force output to O (reset=0)

or 1 (set=0)

R

-

=

R'i

VI - Sequential Logic

S' —

R%
si:)’—'*

R' —

s
BDas

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Q

o

Q

Q

Timing behavior

Q
WQ

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

State behavior or R-S latch

Truth table of R-S latch behavior

Q

R B, O O|lW;!

VI - Sequential Logic

R O kL O]

hold

° QQ
1 00
unstable

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Theoretical R-S latch behavior R%

State diagram
o states: possible values

o transitions: changes
based on inputs

possible oscillation
between states 00 and 11

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

Observed R-S latch behavior

Very difficult to observe R-S latch in the 1-1 state
o one of R or S usually changes first

Ambiguously returns to state 0-1 or 1-0

o a so-called "race condition”

o or non-deterministic transition
SR=10

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

R-S latch analysis

Break feedback path

s e R
S R Q) Q(t+4)
0 0 0 0 hold S
0 0 1 1 oo | x| 1
o 1 0 0" reset
O 1 1 0 QW 1| 0| X | 1
100 L et R
1 0 1 1
1 1 0 X not allowed characteristic equation
1 1 1 X

VI - Sequential Logic

Q(t+A) =S + R Q(D)

© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

‘ Activity: R-S latch using NAND gates

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

11

Gated R-S latch

Control when R and
S Inputs matter

o otherwise, the
slightest glitch on

R or S while
enable is low could
cause
change in value Set
stored /T
Sl l '// |
, [
R
enable' 4 :
Q I i
Q |

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

12

Clocks

Used to keep time

o wait long enough for inputs (R' and S') to settle
o then allow to have effect on value stored

Clocks are regular periodic signals
o period (time between ticks)
o duty-cycle (time clock is high between ticks - expressed as % of

period)

l—s] duty cycle (in this case, 50%)

B I S B

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

_

period

I

13

Clocks (cont’d)

Controlling an R-S latch with a clock
o can'tlet R and S change while clock is active (allowing R and S to

pass)
o only have half of clock period for signal changes to propagate
o SIC 1alf of clock period

R and S’

clock’ | |

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Cascading latches

Connect output of one latch to input of another

How to stop changes from racing through chain?

o need to be able to control flow of data from one latch to the next

o move one latch per clock period

o have to worry about logic between latches (arrows) that is too fast

1 -
-

1 -
-

clock

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Master-slave structure

Break flow by alternating clocks (like an air-lock)
0 use positive clock to latch inputs into one R-S latch
o use negative clock to change outputs with another R-S latch

View pair as one basic unit
o master-slave flip-flop
o twice as much logic
o output changes a few gate delays after the falling edge of clock
but does not affect any cascaded flip-fiops
master stage slave stage

P’]
I R Q’_

B
DR

E

CLK

i
gy
l
i

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

The 1s catching problem

In first R-S stage of master-slave FF

o 0-1-0 glitch on R or S while clock is high is "caught" by master stage

o leads to constraints on logic to be hazard-free

1s
Set Reset Cé}tCh
S LrT— M__r
R r
CLK | —
P
D
Q
Q'

VI - Sequential Logic

master stage

slave stage

-
-

"0 R @
s~ s -
CLK >o
Master
Outputs
Slave
Outputs

© Copyright 2004, Gaetano Borriello and Randy H. Katz

R
S

o)
Q

17

D tlip-tlop

Make S and R complements of each other
o eliminates 1s catching problem

o can't just hold previous value
(must have new value ready every clock period)

o value of D just before clock goes low is what is stored in flip-flop
o can make R-S flip-flop by adding logicto make D=S + R’ Q

master stage slave stage
Do e D o
DJ—_I'_}S Q_P—’—l'_}s Q Q
CLK ’>O
|
10 gates

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Edge-triggered flip-flops

More efficient solution: only 6 gates
o sensitive to inputs only near edge of clock signal (not while high)

O] e
holds D’ when
/ clock goes low negative edge-triggered D
D_, 0 flip-flop (D-FF)
R 4-5 gate delays
j J—e— Q
must respect setup and hold time
Clk=1 ——# constraints to successfully
D_H , capture input
Q
S
— T
\ holds D when e
D_, D’ clock goes low characteristic equation
D Q(t+1) =D

VI - dequential L.ogic © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Edge-trigegered flip-flops (cont’d)

Step-by-step analysis
D’ b D’

EW
I

| ?
O
?
O

N
Il

]t

new D
new D #old D

when clock goes high-to-low when clock is low

VI - Sequential Loggata IS IatChe% Copyright 2004, Gaetano Borriello and Randy H. Katz data is held 20

Edge-trigegered flip-flops (cont’d)

Positive edge-triggered

o Inputs sampled on rising edge; outputs change after rising edge
Negative edge-triggered flip-flops

o Inputs sampled on falling edge; outputs change after falling edge

100
I 1 1 1 | 1 1 1 1 | I I |
D | , —
CLK —I—I_I—I—'—|_

ons \4 \ \I \ :
Qpos’ — \ : \ positive edge-triggered FF
- LI ll : ' negative edge-triggered FF

] IV -
Qneg | : L g g gg

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Timing methodologies

Rules for interconnecting components and clocks

0 guarantee proper operation of system when strictly followed
Approach depends on building blocks used for memory
elements

o we'll focus on systems with edge-triggered flip-flops
found in programmable logic devices

o many custom integrated circuits focus on level-sensitive latches

Basic rules for correct timing:

o (1) correct inputs, with respect to time, are provided to the flip-
flops

2 (2) no flip-flop changes state more than once per clocking event

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

22

Timing methodologies (cont’d)

Definition of terms
o clock: periodic event, causes state of memory element to change
can be rising edge or falling edge or high level or low level

o setup time: minimum time before the clocking event by which the
input must be stable (Tsu)

o hold time: minimum time after the clocking event until which the
Input must remain stable (Th)

T.. T data R
su h »1D Q) —1 D Q —
input «—|—
* * > >
clock clock
there is a timing "window" stable changing

around the clocking event B
during which the input must
remain stable and unchanged clock [___ [1___
in order to be recognized
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Comparison of latches and flip-tlops

_ID QR
/\

|
CLK

positive
edge-triggered
flip-flop

DGQ

|
CLK

transparent
(level-sensitive)
latch

VI - Sequential Logic

D []

CLK |

Qedge -
Qlatch M M

behavior is the same unless input changes
while the clock is high

© Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Comparison of latches and tlip-tlops (cont’d)

Type

unclocked
latch

level-sensitive
latch

master-slave

flin-flon
IIIP II\JP

negative
edge-triggered
flip-flop

VI - Sequential Logic

When inputs are sampled

When output is valid

always

clock high
(Tsu/Th around falling
edge of clock)

clock high

(Tsu/Th around falling
edge of clock)

clock hi-to-lo transition

(Tsu/Th around falling
edge of clock)

propagation delay from input change

propagation delay from input change
or clock edge (whichever is later)

propagation delay from falling edge

AV A AT A AN

propagation delay from falling edge
of clock

© Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Typical timing specifications

Positive edge-triggered D flip-flop
o setup and hold times
o minimum clock width
o propagation delays (low to high, high to low, max and typical)

| Tsu Th
T T [\ 18 gf]/*
1.8 |0.5
D ns | ns | I
; T\
w W
/ 3.3 / 3.3
Clk ns ns
/ Tpd
T 3.6 ns
Q Bgdns 1.1 ns
1.1 ns

all measurements are made from the clocking event (the rising edge of the clock)
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Cascading edge-triggered tlip-tlops

IN

CLK

Shift register
o new value goes into first stage
o while previous value of first stage goes into second stage

o consider setup/hold/propagation delays (prop must be > hold)

D Q
>

QO

D Q

VI - Sequential Logic

>

01
ouT

QO
Q1
CLK

© Copyright 2004, Gaetano Borriello and Randy H. Katz

T

Cr

Cascading edge-triggered flip-tlops (cont’d)

Why this works
o propagation delays exceed hold times

o clock width constraint exceeds setup time

o this guarantees following stage will latch current value before it
changes to new value

In

QO
o

CLK

o

Su

- 1.8n$

Su

- 1.8n$

1'.01-3.6ns

VI - Sequential Logic

T
0

h
.oNs

Tp
1.1-3.6ns

T
0

h
.2NSs

timing constraints
guarantee proper
operation of
cascaded components

assumes infinitely fast
distribution of the clock

© Copyright 2004, Gaetano Borriello and Randy H. Katz

Clock skew

The problem

o correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

o this is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic

o effect of skew on cascaded flip-flops: 100

In
CLK1 is a delayed

Q0 ' / version of CLKO
Q1 .

CLKO f\) —

CLK1 \

original state: IN=0,Q0=1,Q1 =1
due to skew, next state becomes: Q0 =0,Q1 =0,andnotQ0=0,Q1 =1

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Summary of latches and flip-flops

Development of D-FF

o level-sensitive used in custom integrated circuits
can be made with 4 switches

o edge-triggered used in programmable logic devices

o good choice for data storage register

Historically J-K FF was popular but now never used

o similar to R-S but with 1-1 being used to toggle output (complement state)
o good in days of TTL/SSI (more complex input function: D=JQ + K’ Q

o not a good choice for PALS/PLAS as it requires 2 inputs

o can always be implemented using D-FF

Preset and clear inputs are highly desirable on flip-flops

o used at start-up or to reset system to a known state

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Metastability and asynchronous inputs

Clocked synchronous circuits

o Inputs, state, and outputs sampled or changed in relation to a
common reference signal (called the clock)

o e.g., master/slave, edge-triggered
Asynchronous circuits

o Inputs, state, and outputs sampled or changed independently of a
common reference signal (glitches/hazards a major concern)

o e.g., R-Slatch

Asynchronous inputs to synchronous circuits

o Inputs can change at any time, will not meet setup/hold times
o dangerous, synchronous inputs are greatly preferred

o cannot be avoided (e.g., reset signal, memory wait, user input)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

Synchronization failure

Occurs when FF input changes close to clock edge
o the FF may enter a metastable state — neither a logic O nor 1 —
o It may stay in this state an indefinite amount of time

o this is not likely in practice but has some probability

Q logic 1
7
— —
; “‘\\
O O 7]
, _ logic O \:_\:_
logic O logic 1
Time —9
small, but non-zero probability oscilloscope traces demonstrating
that the FF output will get stuck synchronizer failure and eventual

decay to steady state
VI - Sequennal g N In-between St(g Copyright 2004, Gaetano Borriello and Randy H. Kafy y

Dealing with synchronization failure

Probability of failure can never be reduced to O, but it can be reduced

o (1) slow down the system clock
this gives the synchronizer more time to decay into a steady state;
synchronizer failure becomes a big problem for very high speed systems

o (2) use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

o (3) cascade two synchronizers
this effectively synchronizes twice (both would have to fail)

asyn_chronous D Q—D 0 " sync_hronized
input input

| CIk

synchronous system

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Handling asynchronous inputs

Never allow asynchronous inputs to fan-out to more than one flip-flop
o synchronize as soon as possible and then treat as synchronous signal

Clocked
Synchronous
System

Synchronizer

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Handling asynchronous inputs (cont’d)

What can go wrong?

o Input changes too close to clock edge (violating setup time
constraint)

In
| In is asynchronous and
fans out to DO and D1

QO

S— one FF catches the
signal, one does not
Q1 /\ Inconsistent state may
be reached!
CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

35

Flip-tlop features

Reset (set state to 0) — R

o synchronous: Dnew = R' ¢ Dold (when next clock edge arrives)
o asynchronous: doesn't wait for clock, quick but dangerous
Preset or set (set state to 1) — S (or sometimes P)

o synchronous: Dnew = Dold + S (when next clock edge arrives)
o asynchronous: doesn't wait for clock, quick but dangerous
Both reset and preset

o Dnew=R'eDold +S (set-dominant)

o Dnew=R'eDold + R'S (reset-dominant)

Selective input capabillity (input enable or load) — LD or EN
o multiplexor at input: Dnew = LD'+ Q + LD « Dold

o load may or may not override reset/set (usually R/S have priority)

Complementary outputs — Q and Q'

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Registers

Collections of flip-flops with similar controls and logic

o stored values somehow related (for example, form binary value)
o share clock, reset, and set lines

o similar logic at each stage

Examples

o shift registers

o counters OuUT1 OuUT2 OouT3 ouUT4

=1 <]
D QF FDQ— ‘—DQ— FDQ—

A\
l

| |
IN1 IN2 IN3 IN4

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Shift register

Holds samples of input

o store last 4 input values in sequence

o 4-bit shift register:

IN —

D Q
AN
I

OouT1

D Q

ouT2

OUT3

D Q

CLK

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

ouT4

Universal shift register

Holds 4 values
o serial or parallel inputs

o serial or parallel outputs
o permits shift left or right
o shift in new values from left or right
output
I I I I clear sets the register contents
and output to O
left_in— L, right_out _ _ _
left OUte_ e right_in sl and sO determine the shift function
clear R -
SQ——» «—— clock sO sl | function
sl—— 0 O | hold state
0O 1 | shiftright
T T T T 1 O | shiftleft
: 1 1 | load new input
input

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Design of universal shift register

Consider one of the four flip-flops ‘i'ear 0 sl — value
o new value at next clock cycle: 0O 0 0 | output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input
Nth cell
T T T T to N-1th to N:-Flth
—» > > > —» cell . Q cell
] — | > D
| CLK |
) CLEAR
61 2 - sO and s1
ry % % §\control mux
QIN-1] Q[N+1]
(left) InpUt[N] (right)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Shift register application

Parallel-to-serial conversion for serial transmission

parallel outputs

L AN
T 1110 1T 11T

parallel inputs

serial transmission

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Pattern recognizer

Combinational function of input samples
o In this case, recognizing the pattern 1001 on the single input

signal

IN ——
CLK

OuT1

>U
O

1 p—our

— o

OuT3

D Q

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

ouT4

42

Counters

Sequences through a fixed set of patterns
o Inthis case, 1000, 0100, 0010, 0001
o if one of the patterns is its initial state (by loading or set/reset)

OUT1 ‘OUTZ ‘OUT3 ouT4
— IN——|D Qr——D Q- —-ID QF —D Q

JAN AN JAN AN
CLK 1 L L I

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Activity

How does this counter work?

OuUT1 ouT2 OUT3 OouT4

— IN—/D Qr——D Qr— —D Q
A A A A
CLK l

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

Binary counter

Logic between registers (not just multiplexer)

o XOR decides when bit should be toggled

o always for low-order bit,

only when first bit is true for second bit,

and so on
OUT1 OUT2 OUT3
D Qr b Q- D QF D Q
N N g |
CLK & 1 .QL &L ﬁ|
A
N

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy H. Katz

OouT4

Four-bit binary synchronous up-counter

Standard component with many applications
positive edge-triggered FFs w/ synchronous load and clear inputs

a

a
a
a

parallel load data from D, C, B, A
enable inputs: must be asserted to enable counting

RCO: ripple-carry out used for cascading counters
high when counter is in its highest state 1111
implemented using an AND gate

| 100 | (2) RCO goes high

Count
RCO

F M O O M M S I

(3) High order 4-bits
/are incremented

L — (1) Low order 4-bits = 1111
—

iello and Randy H. Katz

EN

D

C -

5 RCO

A QD—

QC—

LOAD 5[
NCLK QA

CLR

46

Offset counters

Starting offset counters — use of synchronous load " —lEN
o e.g.,, 0110, 0111, 1000, 1001, RCO ——
1010, 1011, 1100, 1101, 1111, 0110, .. / jj(l)jj :8 88 —
"1" —(B QB —
"0" —A QA —
LOAD
—CLK
0" —CLR
Ending offset counter — comparator for ending value
o e.g., 0000, 0001, 0010, ...,1100, 1101, 0000
"1" _|EN
\ RCO}—
"0" —D QD
"0t —C QCL—. —
"0" —B QB t—— >o—
0" —A QA"
. _ —[LOAD
Combinations of the above (start and stop value) —FLK

|
@
@)
py

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Hardware Description LLanguages and Sequential
Logic

Flip-flops
o representation of clocks - timing of state changes
o asynchronous vs. synchronous

Shift registers
Simple counters

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 48

Flip-tlop in Verilog

Use always block's sensitivity list to wait for clock edge

module dff (clk, d, q);

input clk, d;
output q;
reg g,

always @(posedge clk)
q = d;

endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

49

More Flip-tlops

Synchronous/asynchronous reset/set
o single thread that waits for the clock
o three parallel threads — only one of which waits for the clock

Asynchronous
module dff (clk, s, r, d, q); module dff (clk, s, r, d, q);
input clk, s, r, d; input clk, s, r, d;
output q; output q;
reg a. reg q;
always @(posedge clk) always @(posedge r)
it (r) q = 1"bO; q = 1"b0;
else 1T (s) g = 1"b1; always @(posedge s)
else q = d; q = 1"b1;
always @(posedge clk)
endmodule q = d;
endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 50

Incorrect Flip-tlop 1n Verilog

Use always block's sensitivity list to wait for clock to change

module dff (clk, d, q);

input clk, d;

output q; Not correct! Q will
change whenever the

reg q, clock changes, not
just on an edge.
always @(clk)
q = d;

endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 51

Blocking and Non-Blocking Assignments

Blocking assignments (X=A)
o completes the assignment before continuing on to next statement
Non-blocking assignments (X<=A)

o completes in zero time and doesn’t change the value of the target
until a blocking point (delay/wait) is encountered

Example: swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end
end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 52

Register-transfer-level (RTL) Assignment

Non-blocking assignment is also known as an RTL assignment
o if used in an always block triggered by a clock edge

o all flip-flops change together

// B,C,D all get the value of A
always @(posedge clk)

begin

B

C

D

A;
B:
C-

end

// implements a shift register too
always @(posedge clk)
begin
B <= A;
C <= B;
D <= C;
end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz

53

Mobius Counter in Verilog

)
O~
D =

OO =i

end

[l
-
|
O
o

always @(posedge clk)

begin

oOmw>

end

VI - Sequential Logic

<= ~D;
<= A;
<= B;
<= C;

© Copyright 2004, Gaetano Borriello and Randy H. Katz

54

Binary Counter in Verilog

module binary_counter (clk, c8, c4, c2, cl);

input clk;
output c8, c4, c2, cl;

reg [3:0] count;

initial begin
count = O;
end

always @(posedge clk) begin
count = count + 4’b0001;
end

assign c8 = count[3];
assign c4 = count[2];
assign c2 = count[1];
assign cl = count[0];

endmodule

VI - Sequential Logic

modulle binary_counter (clk, c8, c4, c2, cl, rco);

input clk;

output c8, c4, c2, cl, rco;

reg [3:0] count;

reg rco;

initial begin . . . end

always @(posedge clk) begin . . . end

assign c8 = count[3];

assign c4 = count[2];

assign c2 = count[1];

assign cl = count[0];

assign rco = (count == 4b*1111);
endmodule

© Copyright 2004, Gaetano Borriello and Randy H. Katz

55

Sequential logic summary

Fundamental building block of circuits with state

o latch and flip-flop

o R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop
Timing methodologies

o use of clocks

o cascaded FFs work because propagation delays exceed hold times
o beware of clock skew

Asynchronous inputs and their dangers

o synchronizer failure: what it is and how to minimize its impact
Basic registers

o shift registers

o counters

Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 56

