Microprocessor
Ch.3 Jump, Loop, and Call




OUTLINE

 Loop and Jump instructions

e (Call instructions

 Time delay



LOOP: DJNZ

 DJNZ (decrease jump not zero)
— DIJNZ reg, label
* Decrement the reg by 1 (‘D’)

» Ifregis not zero (‘NZ), jump (‘J’) to the line specified by label; otherwise
exit the loop.

— Example (Demo loop)
MOV A, #0
MOV R2, #4
AGAIN: ADD A, #03
e DINZ R2, AGAIN ; reg: R2, lable: AGAIN

MOV RS, A
Loop 1 2 3 4
R2
A
 The maximum value that can be held in R2 is ; thus the loop can

be repeated for a maximum of times.



LOOP: DJNZ

* Loop inside a loop
— More loops can be achieved by embeding one loop inside another loop

— Example
MOV R1, #0H
MOV A, #55H
MOV R3, #3H
LOOP2: MOV R2, #2H
LOOP1: CPL A ; complement R1 register
c INC R1 ; Increment R1 by 1
DINZ R2, LOOPI |; jump back to again if R2-1 is not zero
DIJNZ R3, LOOP?2 [; jump back to NEXT if R3-1 is not zero

— Flow chart

— There are totally 2 x 3 = 6 loops



LOOP: CONDITIONAL JUMP INSTRUCTIONS

 JZ (jump if A =0)
— JZ label
— Example:
MOV A, #0FEH
ADD A, #1H
JZ OVER
ADD A, #1H
JZ OVER
ADD A, #1H
JZ OVER
OVER: MOV RO, #0H
— Note: JZ can only be used to test register A
* JNZ (jumpifA —«£ 0)
— JNZ label

— Example: write a program to determine if R5 contains 0. If so, put 55H in it; otherwise
do nothing (NOP)

MOV A, RS
INZ NEXT
MOV RS, #55H
NEXT: NOP ; No operation



LOOP:

CONDITIONAL JUMP INSTRUCTIONS

e« JNC (jump if no carry)

N2:

N3:

INC label
Jump to label if no carry (CY = 0)

Example: find the sum of 79H, F5H, and E2H. Put the sum in registers RO (low byte)
and RS (high byte)

MOV A, #0

MOV RO, A

MOV R5, A

MOV A, #79H ; A=A+ 79H =79H

ADD A, #0F5H ; A=7T9H + F5H

JINC N2 ; if CY == 0, jump to the next summation
INCR5 ; if CY == 1, increment RS to record the carry@
ADD A, #0E2H ; A=A+ E2H

JNCN3 ;if CY ==0, jump to the end

INCR5 ; if CY == 1, increment RS to record the carry
MOV RO, A

NOP


JHY
노트
To prevent overflow


LOOP: SHORT JUMP

e All conditional jumps are short jump

— Short jump: the address of the target must be within -128 to +127 bytes of the
current PC (program counter)

 E.g. Addr Opcode
0000 7400 MOV A, #0
0002 6003 JZ TAGT

0004 FA MOV R2, A
0005 0A MOV A, #10
0007 7A00 E] TAGT: MOV R2, #0
;Target (0007) — PC atJ 4)=7-4=3

« Why -128 — 1277

— Opcode of JZ: 01100000 xxxxxxxx (offset)

— Offset = address of target — PC at JZ (PC+2, in the example, it is 4)
— The offset 1s limited to 8 bits (-128 — 127)

— The length of short jump instructions is 2 bytes

— If we want to jump further than -128 or 127, we need to use more
bits to represent the jump offset.


owner
노트
from next PC

owner
선

owner
선


LOOP: SHORT JUMP

 Example

— Find the offset of the forward jump instructions

' Mnemonic Operand
- ORG Q000

- .- MOV RO,#0O
MOV A, #55H |
S J7 . NEXT | o
. INC RO
¢ INC A

o INC A

.- ... ADD  -A,#77h

... - JgNC OVER |
o CLR A
MOV RO,A .

MOV R1,A

.:; j - - MOV R2, 'A_

MOV R3,A -
ADD A, R3

L JNC AGAIN

-~ '8JMP HERE




LOOP: UNCONDITIONAL JUMP

« LJMP (long jump)
— LIMP label
— Jump to anywhere in the program
— Opcode (3 bytes)
* 00000010 A15-A8 A7-A0
« The 2" and 3" bytes represent the absolute address in ROM

» Review: PC has 16 bits =»ROM address range is 0000 - FFFFH =» 16
bits are enough to label any address in ROM

— Example

ORG OH
LIMP FARAWAY ; opcode 02F000H
ORG OF000H

FARAWAY: MOV A, 55H


owner
선

JHY
밑줄


LOOP: UNCONDITIONAL JUMP

10

SJMP (short jump)
— SIMP label

— Jump to an address within -128 — 127 of current PC

— Opcode (2 byte)

10000000 xxxxxxxx (offset) =

— The calculation of offset is the same as conditional jumps (JZ, INZ, INC, ...)
— Example: find the offset of the SIMP instructions (xx and yy in the comments)

TAGTI:

TAGT2:

— What will happen if the target is out of the range of [-128, 127] of current PC?

ORG OH

SIMP TAGT1 ; opcode 80xxH
MOV A, #0 ; opcode 7400H
ORG 10

SIMP TAGT2
MOV A, #0
ORG 35

MOV A, #55H

; opcode 80yyH


owner
노트
PC Relative addressing

JHY
밑줄


OUTLINE

11

e (Call instructions



12
CALL INSTRUCTIONS

e Subroutine

— A section of code that can perform a specific task (e.g. introduce a certain
amount of delay)

— If a task needs to be performed frequently, it’s better to structure the
corresponding codes as a subroutine

* Save memory space (=)
» Better program structure

— Subroutines are invoked by call instructions

* There are two call instructions in 8051
— LCALL (3 byte instruction)
» 16 bits (2 bytes) are used to represent target address
* Long call, the subroutine can be placed anywhere in the ROM
— ACALL (2 byte instruction)
» Absolute call
* Only 11 bits are used to represent target address
— The target address must be within 2K bytes of ACALL


JHY
노트
Doesn't have to be duplicated


CALL: LCALL

- LCALL

— Long call, 3-byte instruction
— OpCOdGZ 00010010 A15-A8 A7-AOQ ; the last two bytes are used to represent target address

— Can be used to call subroutines located anywhere within the 64KB of the
ROM.

— Example

ORG 0

BACK: MOV A, #55H
MOV P1, A ; send 55H to port 1
LCALL DELAY ; call the subroutine delay
MOV A, #0AAH
MOV P1, A ; send AAH to port 1
LCALL DELAY
SIMP BACK

ORG 300H
DELAY: MOV RS, #0FFH
AGAIN: DINZ R5, AGAIN
RET ; return to caller

END



CALL:

CALL AND STACK

14

e (Call instructions and stack

001
ooz
003
ao4
005
00e
007
008
0035
0L0
011
01z
013
014
015
016

After ‘LCALL’ is executed, the PC is changed to the starting address of the subroutine
* E.g. after LCALL, PC points to address 0300H

After the subroutine is done (‘RET’is execdted), the PC goes back to the instruction that
follows ‘LCALL’

» E.g. after RET, PC points back t¢ address 0007H (‘MOV A, #0AAH’)
How does the CPU know where th€ PC should point to after the subroutine? (DEMO)

» Before loading the PC with the address of the subroutine (0300H), the CPU
automatically push the address of the next instruction into stack.

« After RET is executed, the CPU automatically pop the address back to PC.

0000 ORG 0O

0000 7455 BACK: MOV  A,#55H ;load A with 55H

0002 F590 MOV  P1,A ;send 55H to port 1

0004 120300 LCALL DELAY itime delay T STTCALL
0007—74AR MOV  A,#0AAH ;load A with AAH after at
0009 F59 MOV  P1,A ;send ARH to port 1 o5

000B 1203 CALL DELAY

000E ;keep doing this

0010

0010

ORG 300H

MOV RE5,#0FFH ;:R5=255"
Q302 DDFE = AGAIN: DINZ RE&, AGATN ;stay here
0304 22 RET ;return to caller 08— 07
03205 END ;end of asm file

Will be
00@09,0E@08
later

after LCALL at
0B



JHY
선

JHY
선

JHY
텍스트 상자   
Will be 00@09,0E@08 later 
after LCALL at 0B

JHY
텍스트 상자   
after LCALL at 04


CALL: CALL AND STACK

15

« Call instructions and stack (Cont’d)
— Each address is 16 bits (recall: PC is a 16-bit register)
» Each PUSH can put in 8 bit = two PUSH instructions are used

» Similarly, two pop instructions are used to restore the address to PC.

— If you use stack in a subroutine, you MUST use EQUAL number of PUSH
and POP

* Unequal number of PUSH and POP will result in a wrong value being
restored (DEMO LCALL)

» When you exit a subroutine, the SP should always point to the return
address of the subroutine




CALL: CALL AND STACK

16

 Example
— Analyze the contents of the stack and PC

addr
0000
0002
0004
0006
0008
000B
000D

0300
0302
0304
0306
0308

Opcode

7455 BACK:

F590
7C99
D67
120300
T4AA
80F1

C004 TEST:

C005
D001
D002
22

MOV A, #55H
MOV P1, A
MOV R4, #99H
MOV RS, #67H
LCALL TEST
MOV A, #0AAH
SIMP BACK

ORG 300H
PUSH 4
PUSH 5
POP 1
POP2

RET



CALL: ACALL

17

« ACALL
— Absolute call, 2-byte instruction

— 11-bits are used to represent address offset
» The target address must be within 2K by%s] of the address of ACALL

— The ONLY difference between ACALL and LCALL is the limit on target
address

 LCALL: 16 bits used to represent address = target can be anywhere
within 64K bytes

« ACALL: 11 bits used to represent address offset = target needs to be
within 2K bytes of the address of ACALL

— Using ACALL will save 1 byte of memory space.


JHY
노트
2^11


OUTLINE

18

Time delay



19
DELAY: CLOCK V.S. MACHINE CYCLE

* Terminology oscillator 8051

— Clock
» A crystal oscillator is connected to 8051 to provide clock source for 8051.
» Typical clock frequency (f): 11.0592 MHz, 16 MHz, 20 MHz.
 Oscillator period (7):
— Machine cycle
» A basic operation performed by CPU to execute
an instruction.
* Original 8051
— 1 machine cycle = 12 oscillator periods
« DS89C450
— 1 machine cycle = 1 oscillator period

 Different instructions require different number of machine cycles oscillator
— E.g. original 8051
1 machine cycle: ADD, MOV R3, A
2 machine cycles: MOV 08, A
4 machine cycles: MUL, DIV
» Machine cycles can be found at Table A-1 in Appendix A (p.554).
[t takes different amount of time to execute different instructions.



DELAY

20

Example |

— For an 8051 system with 1 machine
cycle = 12 oscillator periods. If the
clock frequency is 11.0592 MHz,

(1) What is the duration of 1
machine cycle?

(2) find how long it takes to execute
each of the following instructions

(a) MOV R3, #data
(b) MOV P3,R1

(c) NOP

(d) DINZ R2, AGAIN

Instruction Machine
Cycles
MOV Rn, A 1
MOV direct, Rn 2
NOP 1
DJNZ Rn, target 2



JaeheeYou
사각형


DELAY: LOOP

21

 Example:
— 1. For an 8051 system with 1 machine cycle = 12 oscillator periods. If the

clock frequency is 11.0592 MHz. Find the delay incurred by the subroutine.

ORG 300H
DELAY: MOV R3, #200 ; 1 machine cycle
HERE: DJNZ R3, HERE ; 2 machine cycle

RET ; 2 machine cycle



DELAY: DS89C450

22

DS89C450

— 1 machine cycle = 1 oscillator clock period
— The machine cycles for all instructions can be found in the user guide of DS89C4x0

Machine cycles

Instruction 8051 DS89C4x0
MOV R3.#value 1 2
DEC Rx 1 1
DINZ 2 4
LIMP 2 3
SIMP 2 3
NOP 1 1
MUL AB 4 9
— Example:

* A 89C450 is connected to an oscillator with frequency 11.0592MHz. Find
how long it takes to execute the following instruction

(a) MOV R3, #55 (b) DJNZ R2, target



DELAY: EMBEDDED LOOPS

23

Example

— A DS89C450 is connected to a 11.0592 MHz XTAL. Find the time delay in

the following subroutine

DELAY:

MOV R2, #200
AGAIN: MOV R3, #250
HERE: NOP

NOP

DINZ R3, HERE

DINZ R2, AGAIN

RET

; machine cycles



DELAY:

 Example

— Write a program to toggle all the bits of P1 every 200 ms (55H > AAH -
...) with DS89C450 and 11.0592 MHz XTAL.

MOV R1, #9
Al: MOV R2, #242
A2: MOV R3, #355
A3: DINZ R3, A3

DINZ R2, A2

DINZ R1, Al





