Lecture #9: MIPS Instruction Format

2005-07-05

Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as data.

2) Therefore, entire programs can be
stored in memory to be read or
written just like data.

Consequence: Everything Addressed

 Everything has a memory address:
Instructions, data words

* One register keeps address of instruction
being executed: “Program Counter” (PC)

« Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

« Computer “brain” executes the instruction at PC
« Jumps and branches modify PC

Instructions as Numbers (1/2)

e Currently all data we work with is In
words (32-bit blocks):

* Each register is a word.
e lw and sw both access memory one word
at a time.

S0 how do we represent instructions?

* Remember: Computer only understands
1s and 0s, so “add $t0,%$0,%$0” is
meaningless. (Should be binary format)

 MIPS wants simplicity: since data is in
words, make instructions be words too

Instructions as Numbers (2/2)

*One word is 32 bits, so divide
instruction word into “fields”.

e Each field tells computer something
about instruction.

* 3 basic types of instruction formats:
* R-format
e |-format
 J-format

Instruction Formats

* | immediate) -fOrmat: used for instructions
with immediates, 1w and sw gsince the
offset counts as an immediate), and the
branches (beqg and bne),

 (but not the shift instructions; later)

« J-format: used for j and jal
(Qump and link)

 R-format: used for all other instructions

R-Format Instructions (1/5)

* Define “fields” of the following number
of bitseach:6+5+5+5+5+6 =32

6

D

D

D

o)

6

* For simplicity, each field has a name:

opcode

I'S

It

rd

shamt

funct

* Important: On these slides and in book, each field
is viewed as a 5- or 6-bit unsigned integer, not as

part of a 32-bit integer.

5-bit fields = 0-31, 6-bit fields =» 0-63.

R-Format Instructions (2/5)

 What do these field integer values tell us?

eopcode: partially specifies what instruction
itis
- Note: This number is equal to 0 for all R-Format
instructions.

efunct: combined with opcode, this number
exactly specifies the instruction for
R-Format instructions

R-Format Instructions (3/5)

e More fields:

eI's (Source Register): generally used to
specify register containing first operand

ert (Target Register): generally used to
specify register containing second
operand (note that name is misleading)

rd (Destination Register): generally used
to specify register which will receive
result of computation

R-Format Instructions (4/5)

* Notes about register fields:

« Each register field is exactly 5 bits, which
means that it can specify any unsigned

intedger in the range 0-31. Each of these

fields specifies one of the 32 registers by

number.

 The word “generally” was used because
Ehere are exceptions that we’ll see later.
..,

- mult and div have nothing important in the
rd field since the dest registers are hi and Io

- MFfhi (move form hi register) and mflo
(move form lo register) have nothing
important in the rs and rt fields since the
?’%‘LII_I')CG is determined by the instruction (p. 264

R-Format Instructions (5/5)

e Final field:

eshamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

e This field is set to 0 in all but the shift
instructions.

* For a detailed description of field
usage for each instruction, see green
insert in COD 3/e

R-Format Example (1/2)

* MIPS Instruction:
add $8,%$9,%10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rs =9 (first operand)

rt =10 (second operand)

rd = 8 (destination)

shamt = 0 (not a shift)

R-Format Example (2/2)

e MIPS Instruction:
$8, %9, %510

Decimal number per field representation:

add

0

9

10 38

0

32

Binary number per field representation:

{ 000000| 01:001 [1010{:01000| 00000 [100000
hex representation: 012A 4020, ,
decimal representation: 19,546,144

ten

e Called a Machine Language Instruction

I-Format Instructions (1/4)

 What about instructions with
immediates (e.g. addi and Iw)?

 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

* ldeally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

 Define new instruction format that is
partially consistent with R-format:

* Notice that, if instruction has an immediate,
(if immediate > 31) then it uses at most 2
registers.

I-Format Instructions (2/4)

e Define “fields” of the following number
of bits each: 6 + 5+ 5 + 16 = 32 bits

6 S) 16

* Again, each field has a name:

opcode| rs rt immediate

* Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

 Notice: No rd field

oV

I-Form
La

Al

t Instructions (3/4)

d
Vhat do these fields mean?

=opcode: same as before except that, since
there’s no funct field, opcode uniquely
specifies an instruction in I-format

* This also answers question of why
R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field:
in order to be consistent with other
formats. (to be consistent with 6 bit |
Format opcode format)

=rs: specifies the only register operand (if
there is one)

ert: specifies register which will receive
result of computation (this is why it’s

called the target register “rt”) (source for R format
before)

I-Format Instructions (4/4)

e The Immediate Field:

eaddr, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.

* 16 bits = can be used to represent
immediate up to 21° different values

* This is large enough to handle the offset
in a typical Iw or sw, plus a vast majority
of values that will be used in the slti
instruction.

I-Format Example (1/2)

e MIPS Instruction:
addi $21,%22,-50

opcode = 8 (look up in table in book)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

I-Format Example (2/2)

* MIPS Instruction:
addi $21,%22,-50

Decimal/field representation:

38 22 21 -50

Binary/field representation:

001000] 10110{10101) 1111111111001110

hexadecimal representation: 22D5 FFCE,
decimal representation: 584,449,998

ten

* Problem 0: Unsigned # sign-extended?

eaddiu, sltiu, sign-extends immediates
to 32 bits. Thus, # is a “signed” integer.

 Rationale
eaddiu so that can add w/out overflow

(of immediate #) - See K&R pp. 230, 305
sltiu suffers so that we can have ez HW

(easier hardware but problems on sltiu)

- Does this mean we’ll get wrong answers?

- Nope, it means has to handle any
unsigned immediate 275 < n < 215 (l.e., with a
1 in the 15th bit and 0s in the upper 2 bytes)
as it does for numbers that are too large.

—>Problem 1 rationale

 Problem 1:

 Chances are that addi, lw, sw and sl ti
will use immediates small enough to fit in
the immediate field.

e ...but what if it’s too big?

 We need a way to deal with a 32-bit
immediate in any I-format instruction.

e Solution to Problem 1:
e Handle it in software + new instruction

 Don’t change the current instructions:
instead, add a new instruction to help out

* New Instruction: (16b immediate solution)
ful register, 1mmediate

e stands for Load Upper Immediate

e takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register

e sets lower half to 0s

e Solution to Problem 1 (continued):
*So how does luil help us?

 Example:
addi $t0,$t0, OxXABABCDCD

becomes:

lui $at, OxABAB
ori $at, $at, OxCDCD
add $t0,$t0,%at

 Now each I-format instruction has only a 16-
bit immediate.

e Wouldn'’t it be nice if the assembler would
this for us automatically? (later)

J-Format Instructions (0/5)

Jumps modify the PC:

“j <label>”

means

«Set the next PC = the address of the
instruction pointed to by <label>”

J-Format Instructions (1/5)

Jumps modify the PC:
e j and jal jump to labels
* but a label is just a name for an address!
* S0, the ML (machine language) €qUIValents of j

and jal use addresses

- ldeally, we could specify a 32-bit memory
address to jump to.

- Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a single
32-bit word, so we compromise:

J-Format Instructions (2/5)

* Define fields of the following number
of bits each:

6 bits 26 bits

* As usual, each field has a name:

opcode target address

* Keep opcode field identical to R-format
and I-format for consistency.

e Combine all other fields to make room
for large target address.

J-Format Instructions (3/5)

e target has 26 bits of the 32-bit bit address.

e Optimization:

e jumps will only jump to word aligned
addresses,

- so last two bits of address are always 00 (in
binary).

- let’s just take this for granted and not even
specify them.

J-Format Instructions (4/5)

 Now : we have 28 bits of a 32-bit address

 Where do we get the other 4 bits?

* By definition, take the 4 highest-order bits
from the PC.

e Technically, this means that we cannot jump
to anywhere in memory, but it’s adequate
99.9999...% of the time, since programs
aren’t that long

- only if jump straddles a 256 MB (28bits)
boundary

- If we absolutely need to specify a 32-bit
address, we can always put it in a register and
use the jr instruction. (long jump)

J-Format Instructions (5/5)

e SumMmmary:
* Next PC = { PC[31..28], target address, 00 }

 Understand where each part came from!

*Note: {,, } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

{1010, 11111111111111111111111111, 00 }
=10101111111111111111111111111100

* Note: Book uses ||, Verilog uses {, , }

« We won’t actually be learning Verilog, but
it is useful to know a little of its notation

Other Jumps and Branches

 We have j and jal

 What about jr?

« J-format won’t work (no reg field)
* S0, use R-format and ignore other regs:

opcode rs rt rd shamt funct
| 0 $reg| O 0 0 8 |

 What about beq and bne?
* Tight fit: 2 regs and an immediate (address)

Branches: PC-Relative Addressing (1/4)

e Use I-Format

opcode

'S

rt

immedirate

e Opcode specifies beq v. bne

*rs and rt specify registers to compare

 What can 1mmediate specify?
= immediate is only 16 bits

* Using word-align trick, we can get 18 bits

o Still not enough! (for target address)
- Would have to use jr if straddling a 256KB.

Branches: PC-Relative Addressing (2/4)

* How do we usually use branches?
 Answer: 1T-else, while, for

 Loops are generally small: typically up to
50 instructions

* Function calls and unconditional jumps are
done using jump instructions (J and jal),

not the branches.

* Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount...

Branches: PC-Relative Addressing (3/4)

e Solution to branches in a 32-bit
instruction: PC-Relative Addressing

e Let the 16-bit immediate field be a
sidgned two’s complement integer to be
added to the PC if we take the branch.

* Now we can branch + 27 words from
the PC, which should be enough to
cover almost any loop.

* (Notice : different from 4 bit concatenation before)

Branches: PC-Relative Addressing (4/4)
 Branch Calcuiation:
* If we don’t take the branch:
next PC=PC +4

PC+4 = byte address of next instruction
o If we do take the branch:
next PC = (PC + 4) + (1immediate * 4)
* Observations

- Immediate field specifies the number of

words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.

- Due to hardware, add immediate to (PC+4),
not to PC; will be clearer why later in course

 MIPS Code:

Loop: beo $9,%$0,End
adc $8,%$8,%$10
adc $9,%9,-1

i Loop
End: sub $2,%$3,%4

* beqg branch is I-Format:
opcode = 4 (look up in table)
rs =9 (first operand)
rt = 0 (second operand)
iImmediate = ???

* MIPS Code:

Loop: beo $9,%0,End
addi $8,%$8,%$10
addr $9,%9,-1
J Loop

End: sub $2,%$3,%4

e Immediate Field:

 Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch (“+47).

*In beq case, Immediate =3
(not 4 from next PC)

 MIPS Code:

Loop: bec
ado
qdc
J

End: sub

$9, %0, End
$8,%$8,%10
$9,%9,-1
Loop

$2,%3,%4

decimal representation:

4 9

O 3

binary representation:

000100f 01001

00000; 0000000000000011

Questions on PC-addressing

* Does the value in branch field change
if we move the code?

e What do we do if destination is > 215
instructions away from branch?

MIPS So Far:

 MIPS Machine Language Instruction:
32 bits representing a single instruction

R| opcode| rs rt rd |shamt| funct
| | opcode| rs rt immediate
J [opcode target address

 Branches use PC-relative addressing,
Jumps use PC-absolute addressing.

Decoding Machine Language

 How do we convert 1s and 0s to C code?
Machine language — C?

 For each 32 bits:

* Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.

e Use instruction type to determine which
fields exist.
* Write out MIPS assembly code, converting

each field to name, register number/name,
or decimal/hex number.

* Logically convert this MIPS code into valid
C code. Always possible? Unique? (No)

Decoding Example (1/7)

* Here are six machine language
instructions in hexadecimal:

00001025, .,
0005402A, ..
11000003,
00441020, ..,
20A5FFFF, .
08100001,

LI RV AN

e et the first instruction be at address
4,194,304, (0x00400000,.,).

* Next step: convert hex to binary

Decoding Example (2/7)

* The six machine language instructions in

binary:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

* Next step: identify opcode and format

R 0 rs rt rd |[shamt| funct
111,4-31 rs rt immediate
Jl2o0or3 target address

Decoding Example (3/7)

* Select the opcode (first 6 bits)
to determine the format:

Format:

R |{00000000000000000001000000100101
R |00000000000001010100000000101010
| |{00010001000000000000000000000011
R |00000000010001000001000000100000
| |[00100000101001011111111111111111
J 100001000000100000000000000000001

 Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise |I-Format.

 Next step: separation of fields

Decoding Example (4/7)

* Fields separated based on format/opcode:
Format:

R 0 0 0 2 O 37
R O O D 38 O 42
| 4 8 O +3

R 0 2 4 2 O 32
| 8) o) -1

J 2 1,048,577

* Next step: translate (“disassemble”) to
MIPS assembly instructions

Decoding Example (5/7)

 MIPS Assembly (Part 1):

Address: Assembly instructions:
0x00400000 or $2,%0,%0
0x00400004 st $8,%0,%5
0x00400008 be $8,%0,3
0x0040000c add $2,%$2,%4
0x00400010 addil $5,%5,-1
0x00400014 J 0x100001

* Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

Decoding Example (6/7)

 MIPS Assembly (Part 2):

or
Loop: slt
beo
add

addi

Exit:

$v0,$0,%$0
$t0, %0, $al
$t0,$0,Exat
$v0,$v0,$al
$al,%al, -1
Loop

 Next step: translate to C code

(be creative!)

Decoding Example (7/7)

Before Hex: < After C code (Mapping below)
$vO: product

00001025, $a0: multiplicand
0005402A, ., $al: multiplier
11000003, A
00441020, Product = 0. .
>0A5EEEE while (multiplier > 0) { _
hex product += multiplicand;
08100001, \ multiplier -= 1;
or $v0,%$0,%$0
Loop: slt $t0,$0,%al Instructions are just

beq $t0,30,EXIT| pnumbers, code is

add $v0,$v0,%a0 :
addi $al.$al.-1 treated like data

J Loop
EXIt:

Peer Instruction Question

(for A,B) When combining two C files into
one executable, recall we can compile them
independently & then merge them together.
Jump insts don't require any changes.

Branch insts don't require any changes.

W >

C. You now have all the tools to be able to
“decompile” a stream of 1s and 0s into C!

