
CEG 2400 Tutorial 4

ARM Assembly ARM Assembly
ProgrammingProgramming

Instruction Set
ARM Assembly ProgrammingARM Assembly Programming

Two instruction sets:
ARM

Standard 32-bit instruction set

THUMB
16-bit compressed form

Code density better than most CISC

Dynamic decompression in pipeline

ARM Instruction Set (1)
ARM Assembly ProgrammingARM Assembly Programming

Features:
Load/Store architecture

3-address data processing instructions

Conditional execution

Load/Store multiple registers

Shift & ALU operation in single clock cycle

ARM Instruction Set (2)

Conditional execution:
Each data processing instruction
postfixed by condition code

Result – smooth flow of instructions through pipeline

16 condition codes:

ARM Assembly ProgrammingARM Assembly Programming

special
purposeNVsigned less

thanLTno overflowVCunsigned
lowerCC

alwaysALsigned greater
than or equalGEoverflowVS

unsigned
higher or
same

CS

signed less
than or equalLEunsigned

lower or sameLSpositive or
zeroPLnot equalNE

signed greater
thanGTunsigned

higherHInegativeMIequalEQ

ARM Instruction Set (3)
ARM Assembly ProgrammingARM Assembly Programming

ARM Instruction Set

Data processing
instructions

Data transfer
instructions

Software interrupt
instructions

Block transfer
instructions

Multiply instructions

Branching instructions

Data Processing Instructions (1)
ARM Assembly ProgrammingARM Assembly Programming

Arithmetic and logical operations

3-address format:
Two 32-bit operands
(op1 is register, op2 is register or
immediate)

32-bit result placed in a register

Barrel shifter for op2 allows full 32-bit
shift within 1 instruction cycle

Data Processing Instructions (2)
ARM Assembly ProgrammingARM Assembly Programming

Arithmetic operations:
ADD, ADDC, SUB, SUBC, RSB, RSC

Bit-wise logical operations:
AND, EOR, ORR, BIC

Register movement operations:
MOV, MVN

Comparison operations:
TST, TEQ, CMP, CMN

Data Processing Instructions (3)
ARM Assembly ProgrammingARM Assembly Programming

Data processing instructions + Conditional
codes + Barrel shifter = Powerful tools for
efficient coded programs
E.g.:

if (z==1) R1=R2+(R3*4)

compiles to

ADDEQS R1,R2,R3, LSL #2

(SINGLE INSTRUCTION !)

Data Transfer Instructions

Load/store instructions

Used to move signed and unsigned
Word, Half Word and Byte to and from registers

Can be used to load PC
(if target address is beyond branch instruction range)

ARM Assembly ProgrammingARM Assembly Programming

Store Signed ByteSTRSBLoad Signed ByteLDRSB

Store ByteSTRBLoad ByteLDRB

Store Signed Half WordSTRSHLoad Signed Half WordLDRSH

Store Half WordSTRHLoad Half WordLDRH

Store WordSTRLoad WordLDR

Block Transfer Instructions
ARM Assembly ProgrammingARM Assembly Programming

Load/Store Multiple blocks
(LDM/STM)

Whole register bank or a subset
copied to memory or restored
with single instruction

E.g.
STMED SP!,{R0-R3,R14} @save R0 to R3 to

use as workspace and R14 for retruning.
LDMED SP!,{R0-R3,R15} @ restore workspace

and return

R0

R1

R2

R14

R15

Mi

Mi+1

Mi+2

Mi+14

Mi+15

LDM

STM

Swap Instruction
ARM Assembly ProgrammingARM Assembly Programming

Exchanges a word
between registers

Two cycles but
single atomic action

Support for RT
semaphores

R0

R1

R2

R7

R8

R15

E.g.

SWP R0,R1,[R2]
@Load R0 with the word addressed by R2,
and store R1 at R2

SWPB R2,R3,[R4]

Modifying the Status Registers
ARM Assembly ProgrammingARM Assembly Programming

Only indirectly

MSR moves contents
from CPSR/SPSR to
selected GPR

MRS moves contents
from selected GPR to
CPSR/SPSR

Only in privileged
modes can change all
valid bits

R0

R1

R7

R8

R14

R15

CPSR
SPSR

MSR

MRS

Multiply Instructions (1)
ARM Assembly ProgrammingARM Assembly Programming

Integer multiplication (32-bit result)

Long integer multiplication (64-bit result)

Built in Multiply Accumulate Unit (MAC)

Multiply and accumulate instructions
add product to running total

Multiply Instructions (2)

Instructions:

ARM Assembly ProgrammingARM Assembly Programming

64-bit resultSigned multiply accumulateSMLAL

64-bit resultSigned multiplySMULL

64-bit resultUnsigned multiply accumulateUMLAL

64-bit resultUnsigned multiplyUMULL

32-bit resultMultiply accumulateMULA

32-bit resultMultiplyMUL

Software Interrupt
ARM Assembly ProgrammingARM Assembly Programming

SWI instruction
Forces CPU into supervisor mode
Usage: SWI #n

Maximum 224 calls
Suitable for running privileged code and

making OS calls

Cond Opcode Ordinal
31 28 27 24 23 0

Branching Instructions (1)
ARM Assembly ProgrammingARM Assembly Programming

Branch (B):
jumps forwards/backwards

up to 32 MB

Branch link (BL):
same + saves (PC+4) in LR

Suitable for function call/return

Condition codes for conditional
branches

Branching Instructions (2)
ARM Assembly ProgrammingARM Assembly Programming

Branch exchange (BX) and
Branch link exchange (BLX):

same as B/BL +
exchange instruction set (ARM THUMB)

Only way to swap sets

THUMB Instruction Set
ARM Assembly ProgrammingARM Assembly Programming

Compressed form of ARM
Instructions stored as 16-bit,
Decompressed into ARM instructions and
Executed

Lower performance (ARM 40% faster)

Higher density (THUMB saves 30% space)

Optimal –
“interworking” (combining two sets) –

compiler supported

THUMB Instruction Set (2)
ARM Assembly ProgrammingARM Assembly Programming

More traditional:
No condition codes
Two-address data processing instructions

Access to R0 – R8 restricted to
MOV, ADD, CMP

PUSH/POP for stack manipulation
Descending stack (SP hardwired to R13)

THUMB Instruction Set (3)
ARM Assembly ProgrammingARM Assembly Programming

No MSR and MRS,
must change to ARM to modify CPSR
(change using BX or BLX)

ARM entered automatically after
RESET or entering exception mode
Maximum 255 SWI calls

Bad Program vs. Good Program (1)
ARM Assembly ProgrammingARM Assembly Programming

Euclid’s Greatest Common Divisor (gcd) algorithm
In C program language
int gcd (int a, int b)
{

while (a!=b) do
{

if (a>b)
a=a-b;

else
b=b-a;

}
return a;

}

In Arm Assembly language
gcd CMP r0,r1

BEQ end
BLT less
SUB r0,r0,r1
B gcd

less
SUB r1,r1,r0
B gcd

end

Bad Program vs. Good Program (2)
ARM Assembly ProgrammingARM Assembly Programming

Euclid’s Greatest Common Divisor (gcd) algorithm
Bad:

gcd CMP r0,r1
BEQ end
BLT less
SUB r0,r0,r1
B gcd

less
SUB r1,r1,r0
B gcd

end

Good:

gcd CMP r0,r1
SUBGT r0,r0,r1
SUBLT r1,r1,r0
BNE gcd

end

Only four instructions
Execute faster in most cases

Bad Program vs. Good Program (3)
Conditional branches only

ARM Assembly ProgrammingARM Assembly Programming

3BEQ end11
Total=13

1CMP r0,r111

3B gcd11

1SUB r1,r1,r021

3BLT less21

1(not executed)BEQ end21

1CMP r0,r121
Cycles(ARM7)Instructionr1:br0:a

Bad Program vs. Good Program (4)
All instructions conditional

ARM Assembly ProgrammingARM Assembly Programming

Total=4

1 (not executed)BNE gcd11

1SUBLT r1,r1,r011

1 (not executed)SUBGT r0,r0,r121

1CMP r0,r121
Cycles(ARM7)Instructionr1:br0:a

GCC inline assembly (1)
ARM Assembly ProgrammingARM Assembly Programming

A simple Example:
// Passing Input parameters and return output varaible using assembler
int main(void) {

int i= 12, j =7;
int a;

// this assembly issue: a = i+ j statement
asm volatile(" add %0,%1,%2"
:"=r" (a) // a = %0
:"r" (j), "r" (i) // j = %1, i = %2
// no clobber list, so this line is empty
);

a = a + 9;
printf("a = %d \n",a);
return 0;
}

GCC inline assembly (2)
ARM Assembly ProgrammingARM Assembly Programming

The general form of an asm() is:
asm volatile(“code”:outputs:inputs:clobbers);

● Within the “code”, %0 refers to the first argument (usually an
output, unless there are no outputs), %1 to the second, and
so forth. It only goes up to %9.

● Including multi-line asm, you should separate lines with “\n\t”
or use “;” as a separator to put more than one asm on a line.
Or just put these codes in different line

● Each output or input in the comma-separated list has two
parts, “constraints” and (value). The (value) part is an
expression. For outputs, it must be an lvalue.

● In “constraints”, all outputs must be marked with “=”.

GCC inline assembly (3)
ARM Assembly ProgrammingARM Assembly Programming

Use cross-compiler to compile this
program .

>arm-elf-gcc –elf2flt –o test test.c –static
>file test
>test: BFLT executable - version 4 ram

Download the executable binary file to our
arm simulator.

>ftp 10.0.0.2
>binary
>get test
>bye

Execute this program in our arm simulator

Useful Web AddressesUseful Web Addresses

ARM
http://www.arm.com/

ARM Limited ARM Architecture Reference Manual,
Addison Wesley, June 2000

Trevor Martin The Insiders Guide To The Philips
ARM7-Based Microcontrollers, Hitex (UK) Ltd.,
February 2005

Steve Furber ARM System-On-Chip Architecture
(2nd edition), Addison Wesley, March 2000

