CEG 2400 Tutorial 4

ARM Assembly
Programming

ARM Assembly Programming

Instruction Set

Two Instruction sets:
- ARM

- Standard 32-bit instruction set

- THUMB

~ 16-bit compressed form
~ Code density better than most CISC

~ Dynamic decompression in pipeline

ARM Assembly Programming

ARM Instruction Set (1)

Features:

- Load/Store architecture

« 3-address data processing instructions
» Conditional execution

« Load/Store multiple registers

« Shift & ALU operation in single clock cycle

ARM Assembly Programming

ARM Instruction Set (2)

Conditional execution:

« Each data processing instruction
postfixed by condition code

« Result — smooth flow of instructions through pipeline

= 16 condition codes:

unsigned signed greater

equal MI negative higher than

positive or unsigned LE signed less
zero lower or same than or equal

not equal PL

unsigned
higher or overflow

Same

signed greater
always
than or equal

unsigned 10 overflow signed less NV special
lower than purpose

ARM Assembly Programming

ARM Instruction Set (3)

ARM Instruction Set
Data processing
instructions
Data transfer
Block transfer Instructions
instructions
Branching instructions
M Software interrupt
instructions

ARM Assembly Programming

Data Processing Instructions (1)

Arithmetic and logical operations

3-address format:

« Two 32-bit operands
(op1 is register, op2 is register or
iImmediate)

« 32-bit result placed in a register

Barrel shifter for op2 allows full 32-bit
shift within 1 instruction cycle

ARM Assembly Programming

Data Processing Instructions (2)

Arithmetic operations:
« ADD, ADDC, SUB, SUBC, RSB, RSC

Bit-wise logical operations:
« AND, EOR, ORR, BIC

Register movement operations:
- MOV, MVN

Comparison operations:
- TST, TEQ, CMP, CMN

ARM Assembly Programming

Data Processing Instructions (3)

Data processing instructions + Conditional
codes + Barrel shifter = Powerful tools for

efficient coded programs
E.Q.

if (z==1) R1=R2+(R3%4)
compiles to
ADDEQS R1,R2,R3, LSL #2
(SINGLE INSTRUCTION 1)

ARM Assembly Programming

Data Transfer Instructions

Load/store instructions

Used to move signed and unsigned
Word, Half Word and Byte to and from registers

Can be used to load PC
(if target address is beyond branch instruction range)

LDR Load Word STR Store Word

LDRH | Load Half Word STRH | Store Half Word
LDRSH | Load Signed Half Word | STRSH | Store Signed Half Word
LDRB |Load Byte STRB | Store Byte

LDRSB | Load Signed Byte STRSB | Store Signed Byte

ARM Assembly Programming

Block Transfer Instructions

Load/Store Multiple blocks

(LDM/STM)

Mi
Whole reqister bank or a subset LDM BV
copied to memory or restored . / Mi+2

with single instruction

E.Q. Mi+14
STMED SP!,{R0-R3,R14} @save RO to R3 to I Mi+15

use as workspace and R14 for retruning.

LDMED SP!,{R0-R3,R15} @ restore workspace
and return

ARM Assembly Programming

Swap Instruction

Exchanges a word
between registers

Two cycles but
single atomic action

Support for RT
semaphores

E.Q.
SWP RO,R1,[R2]

@Load RO with the word addressed by R2,
and store R1 at R2

SWPB R2,R3,[R4]

R15

ARM Assembly Programming

Modifying the Status Registers

Only indirectly

MSR moves contents m
from CPSR/SPSR to MRS | |
I
selected GPR - - ~
MRS moves contents CPSR MSR R8
from selected GPR to sPsr i |
CPSR/SPSR '

Only in privileged
modes can change all
valid bits

ARM Assembly Programming

Multiply Instructions (1)

Integer multiplication (32-bit result)
Long integer multiplication (64-bit result)
Built in Multiply Accumulate Unit (MAC)

Multiply and accumulate instructions
add product to running total

ARM Assembly Programming

Multiply Instructions (2)

Instructions:
MUL Multiply 32-bit result
MULA Multiply accumulate 32-bit result
UMULL Unsigned multiply 64-bit result
UMLAL Unsigned multiply accumulate 64-bit result
SMULL Signed multiply 64-bit result

SMLAL Signed multiply accumulate 64-bit result

ARM Assembly Programming

Software Interrupt

SWI instruction

« Forces CPU into supervisor mode
« Usage: SWI #n

31 28 27 24 23 0
Cond Opcode Ordinal

« Maximum 2* calls
« Suitable for running privileged code and
making OS calls

ARM Assembly Programming

Branching Instructions (1)

Branch (B):
jumps forwards/backwards
up to 32 MB

Branch link (BL):
same + saves (PC+4)in LR

Suitable for function call/return

Condition codes for conditional
branches

ARM Assembly Programming

Branching Instructions (2)

Branch exchange (BX) and
Branch link exchange (BLX):
same as B/BL +

exchange instruction set (ARM <THUMB)

Only way to swap sets

ARM Assembly Programming

THUMB Instruction Set

Compressed form of ARM

» Instructions stored as 16-Dbit,

« Decompressed into ARM instructions and
« Executed

Lower performance (ARM 40% faster)
Higher density (THUMB saves 30% space)

Optimal —
“Interworking” (combining two sets) —
compiler supported

ARM Assembly Programming

THUMB Instruction Set (2)

More traditional:
« No condition codes
« Two-address data processing instructions

Access to RO — R8 restricted to
. MOV, ADD, CMP

PUSH/POP for stack manipulation
« Descending stack (SP hardwired to R13)

ARM Assembly Programming

THUMB Instruction Set (3)

No MSR and MRS,
must change to ARM to modify CPSR
(change using BX or BLX)

ARM entered automatically after
RESET or entering exception mode

Maximum 255 SWI calls

ARM Assembly Programming

Bad Program vs. Good Program (1)

Euclid’s Greatest Common Divisor (gcd) algorithm

In C program language In Arm Assembly language
int gcd (int a, int b) gcd CMP 10,1
{
while (al=b) do BEQ end
{ BLT less
if (a>b) = SuUB r0,r0,r1
a=a-b; B gcd
else less
} b=b-a SUB r1,r1,r0
return a; B gcd

} end

ARM Assembly Programming

Bad Program vs. Good Program (2)

Euclid’s Greatest Common Divisor (gcd) algorithm

Bad: Good:

gcd CMP r0,r1 gcd CMP ro,r1
BEQ end SUBGT r0,r0O,r1
BLT less SUBLT r1,r1,r0
SuB r0,r0,r1 BNE gcd
B gcd end

less
SUB r1,r1,r0 Only four instructions
B gcd Execute faster in most cases

end

ARM Assembly Programming

Bad Program vs. Good Program (3)

Conditional branches only

r0:a r1:b Instruction Cycles(ARMY7)
1 2 CMP r0O,r1 1
1 2 BEQ end 1(not executed)
1 2 BLT less 3
1 2 SUB r1,r1,r0 1
1 1 B gcd 3
1 1 CMP r0,r1 1
1 1 BEQ end 3

Total=13

ARM Assembly Programming

Bad Program vs. Good Program (4)

All instructions conditional

r0:a r1:b Instruction Cycles(ARMY7)
1 2 CMP r0O,r1 1
1 2 SUBGT r0,r0,r1 1 (not executed)
1 1 SUBLT r1,r1,rO0 1
1 1 BNE gcd 1 (not executed)

Total=4

ARM Assembly Programming

GCC inline assembly (1)

A simple Example:

// Passing Input parameters and return output varaible using assembler
int main(void) {

inti=12, =7,
int a;

/[this assembly issue: a = i+ j statement
asm volatile(" add %0,%1,%2"

"=r" (a) // a = %0

"II(J)""()// _%1|_%

// no clobber Ilst so this line is empty

);

a=a+9

printf("a = %d \n",a);
return O;

}

ARM Assembly Programming

GCC inline assembly (2)

The general form of an asm() is:
asm volatile("code™.outputs:inputs:clobbers);

e Within the “code”, %0 refers to the first argument (usually an
output, unless there are no outputs), %1 to the second, and
so forth. It only goes up to %9.

e Including multi-line asm, you should separate lines with “\n\t”
or use “;” as a separator to put more than one asm on a line.

Or just put these codes in different line

e Each output or input in the comma-separated list has two
parts, “constraints” and (value). The (value) part is an
expression. For outputs, it must be an Ivalue.

e In “constraints”, all outputs must be marked with “=".

ARM Assembly Programming

GCC Iinline assembly (3)

Use cross-compiler to compile this
program .

>arm-elf-gcc —elf2flt —o test test.c —static
>file test
>test: BFLT executable - version 4 ram

Download the executable binary file to our
arm simulator.

>ftp 10.0.0.2
>binary
>get test
>bye
Execute this program in our arm simulator

Useful Web Addresses

ARM

http://www.arm.com/

ARM Limited ARM Architecture Reference Manual,
Addison Wesley, June 2000

Trevor Martin The Insiders Guide To The Philips
ARMY7-Based Microcontrollers, Hitex (UK) Ltd.,
February 2005

Steve Furber ARM System-On-Chip Architecture
(2nd edition), Addison Wesley, March 2000

