ARM Developer Suite Overview

Overview of ADS 1.2
]

e [ntegrated set of software development tools for embedded ARM
development

— from evaluating initial prototype software through to producing final optimized
ROM code

e Released December 2001

e Supported hosts
— IBM compatible PCs with Windows 95, 98, 2000, ME or NT4

— Sun workstations with Solaris 2.6, 2.7 or 2.8
- HP workstations with HPUX 10.20, 11
— Red Hat Linux 6.2 & 7.1

e full version License managed using FlexLM
Evaluation version available

e Third—party tool-chains are also available:
http://www.arm.com/DevSupp/

New in ADS 1.2
]

Support for latest ARM cores
ARM926EJ-S, ARM9EJ-S, VFPVvZ2

Support for Architecture V5TEJ

ARMulator simulates execution of Java bytecode
Bytecode display in Jazelle state

Hosted on Red Hat Linux (6.2 and 7.1)

Librarian can merge libraries

Finer grained placement of code and data using pragmas
New linker option for relocatable code

Parallel assembler and object code output from compilers

Main components
«_«c 7

e ANS| C compilers — armcc and tcc
e |SO / Embedded C++ compilers — armcpp and tcpp
e ARM / Thumb assembler — armasm
e Linker — armlink
e \Windows IDE — CodeWarrior
e Debugger — AXD
armsd also supplied for backwards compatibility
e [ormat convertor — fromelf
e Librarian — armar
e (C and C++ libraries
e [nstruction set simulator — ARMulator
e Also ships with

ARM Firmware Suite
ARM Application Library
RealMonitor

Using the Core Tools

ASM source ® From the command line

module(s) i
= From a makefile

I = From CodeWarrior

.0 axf ELF / DWARF2
image

C source
module(s)
ELF
object
file(s)
with
D(‘:\;Abﬁgl: 2 Code size

tables Data size

etc
C++ source

module(s)

p— — —
e} [n
i
O

armcpp -C
tcpp -c

CodeWarrior

Merowerks CodeWarmion for ARM Developer Suite v1.2
Fle Edi ¥iew 3Search Project Debug Hrowser ‘Window Help

HEEac =R AANFEERREER .
C/C++ Fh s : Project
Sensitive | B=SEEEEE EanlE]| - w shapes mcp =101 Manager
-
Editor \v\{}v M~ - - F'ath:|E:\.FruglamFIes\AHM\&D5\1"I_2\Euampleskcpp\sha:ues.cpu <3 Ilﬂ DzbuaRel j B & @ - E
SE Fil i
¥ chapez. cpp: & si.np]_.e Z4+4+ program uzing wvirtusl functions 5 e |Lnk Elrderl Targetsl
:/ and object constructors * | Fie [Code | Dala & |2
B [:hapes.cpg 264 E7 s ==l
tinclude (=tdio h» 77 use only C In -
1 fl 8B4 67 |

class Shape |
Shaoe ¥nemt

protected. o ebuakiel clazses
=s=tatic int newxt_idws) % -€ I % J
int idx; - - - Wiew az mplementon — =)[T Show lbheried
friend woid orint (SF
public: Clagres 421 B i 2 E
virtual VDiEl_L_D"_""_I’.t (:‘ = |H M;n;ha.l Fu.nctr:ms ‘L‘] Data Merbers
i printf{"Shape #9 = ictelirt, i, ini] we
; ¥ S::hnsic o] e
: = 1ad
C/C++
lned Colé |] L~ Browser
o

IE Sowrca: C4Program Fileel ARMYAD ST 2\Enamplesiopplahapas. cpp

class Circle : public Shapes {
int =c, vo. rad;
public:
wirtual waoid print(woid);
Cirelal[int, ink, int);
S
A copy comstructor of the fora Circle{cor &
q

=) T |
E]inl:ilclad-shapa ’Trrf’“ .

Docking toolbars

| | EepEoEe|) ek =

T

. Ty 2D
Docking : : _ S
. File Seaich Processoliews: SpstemVizws Esecute Dplions window Help
windows
1=
BRkAFTOR - B egizters
Register Value
EHCureent ot
fepl [x00009EL 4
N oo ouuus [
e 0000g
x3 00000010 ooos | ap
. rd O0000AAFD oooos a3
Registers .|, s [x00003190 0 wsin | s
-t x00000000 oooos | a5
-r7 00000000 oooogE |- a5
- 00000000 - UDDO0% g 57
ra 0x00000000 oooog | - g
opoog a0
-£10 00000000
H opoog an
#Ell 00000000 ooong al
-r12 mxoooooooz — (flf=nnen az
-r13 Tx03000000 oz
Cx000DBLES

rld

F: ARM7TDMI - Dizazsembly

=10/ x|

0ooog2a0 [Oxes3Lz000] ldr
ooDogZas [Oxedbd40l0] lomcd
00008258 [OeeDBZL001] add

QOO0B™En Crmrmm@l £0001 el

wf

tZ,[ELl,#0]

EL3!, {rd, 114}

rl,rz,rl

am a1 ED1

static Rectangle se(0, 0, 20, 10|:
static Circle =ci5, 5, 10);

int main(woid)

rid

% Theze ohjects are constructad ns2ing both a uzer-de

% & generated copy constructor.

Ly

Fertangle

Cirgle o = Cirnlel&. F.

3

Rectangle (0,0, 20, 10):
17 =

% These static objects are constructed using the use

i

-

Targetl Irnage | Fles Class

| ARMTTOMI -Memery Stait address| D000 -

4

E""E_U&'.ES Address o 1 =2 =24 s] &l 7] al] %I
=4 Cide

T 000003000 90 B0 SF EZ OF 00 OB ES 03 0D
5 0x00006010 OB 20 B2 EJ 08 30 B3 E0 Ol EO
0x00005020 0L 00 S0 EL O0E 00 0D QA FO 00
0z00008030 FA FF FF 04 01 00 14 E3 0B 40
0:00003040 OB S0 85 10 02 00 15 E3 03 50

||| ox0nD0g050 04 S0 56 E2 04 70 94 24 04 70w
» 1| I »

=8 -@|C:knglam FIE&'\AHM'ﬁDSW_E\Euamﬁeskcppkshapes_Dala'\Det-,gFiel'\smpe&a-:lbI - Hex -No prefix I Tab2 - Hex - No piefi | Tabd - Hex- Mo I;(Ef'p;] Tab4 - He 1 | Pl

'r 1 For Help, press F1
A

<MoPasy [ARMUL [ARMFTDM| shapes.as

Source/

Disassembly

Memory

C / C++ Compilers — Key Features
« .

e [ully ANSI compliant C compilers
e |SO / Embedded C++ compilers
e Support for all ARM processors (with ‘—cpu’)
e.g. ARM7TDMI, StrongARM, ARMITDMI, ARM9E, ARM10, Xscale

e Allows source-level debugging of optimized code:
—00 : best debug view, no optimization (default with —g) “Debug”
—01 : most optimizations, good debug view with —g “DebugRel”
—02 : full optimization (the default), limited debug view “Release”

e Support for ROPI / RWP]
Inline assembler
e Interleaved C and Assembler listing (with ‘=S —fs’)

C / C++ Compiler — Data Types
« /']

e hese data types are supported:

— char 8 bit byte

— short 16 bit half—-word

— int 32 bit word

— long 32 bit integer

— float 32 bit IEEE single—precision

— double 64 bit [EEE double—precision
— pointers 32 bits
— long long 64 bit integer
All above are signed by default, except pointer, and

char (which is unsigned by default and can be
made signed with —zc)

Supplied Libraries
]

e ANSI| C library

— Full file handling, string, maths, etc., support on the target
— By default uses semihosted SWI's to access host debugger
facilities
e.g. file 1/O
— Retargetable without need for rebuild kit
Suitable for embedded use — no separate embedded variant
— Automatic selection of the correct library variant

depending on byte order, position independence, stack checking,
etc

— Also contains run time support functions and floating point
support

e (C++ library includes:
Rogue Wave Standard C++ library version 2.01
Run time support functions for the C++ compiler.

Semihosting

: SWI
Librar
Application Code Codey Handler

: / Communication
printf (“hello\n”) ; / with debugger

\runnmg on host

Library code runs on ARM target, but any low-
level I/O required is provided by host.

Host access provided by SWI mechanism.

» SWI interface is common across ARMulator,
Angel and Multi-ICE

~ Semihosted programs will run on all ARM
targets without need for porting

Debug tools must be connected to provide this
functionality

Supported Targets

Host
running
debugger

=

ARMulator

. o

Debug monitor running
on target board

Instruction Set
Simulator running

within debugger On-chip debug
extensions

ARMulator
]

e Software simulation of an ARM core

Instruction accurate
— Allows program execution to be verified
— Counts elapsed memory cycles
- Alloc\gvs benchmarking of systems when given memory map and clock
spee

Configurable for all ARM cores
— |latest cached cores, e.g ARM946E, ARMI66E, ARM10 (incl VFP),
XScale

Tracing support

Customizable — Extension kit supplied

— Models are written in C, so easy to add new peripheral models with
Visual C++ (Interrupt controller and Timers already supplied)

— Can also simulate IRQ or FIQ interrupts ($irqg, $fiq)
— ADS 1.2 Debug Target Guide has details on writing new models

Multi=ICE

Debugger and Multi-ICE server
(can be run on separate machines)

4
I — > Control
. : >Addre55
Lo
s | Data
Y ILY
EmbeddedICE
BREAKPT LDgi(:—RT
-
ARM

e The system being debugged may be the final system!
e Third party protocol converters are also available

Angel Debug Monitor
c

e Debug Monitor which runs on target hardware
— Does not require ARM core to have an EmbeddedICE logic
— Processor never physically halted — useful for real time

applications
— Application code must run in RAM (to set breakpoints, single—
step, etc.)
e Communicates with host debugger via ADP (Angel Debug
Protocol)

— normally over serial link
e Sources supplied as part of the ARM Firmware Suite (AFS)
e Written mainly in C, to ease porting to new hardware
e Ports to third party boards available from other vendors

ARM Firmware Suite
]

e Library of low—level board software and utilities

— UHAL (Hardware Abstraction Layer)

—Masks hardware differences between platforms from other
firmware components and applications

—Designed to speed the development cycle by providing code
for System Initialization, Memory Management and Interrupt
Handling/Installation (including timer support).

— Boot Monitor

— Angel Debug Monitor

— Flash Management Library

— PCl Management (for Integrator /AP)

e Shipped with latest ARM boards and with ADS

ARM Application Library
]

e A highly optimized software suite of useful routines, algorithms
and applications

e Handcrafted by ARM architecture experts
— excellent examples of optimized ARM code
e full source code, build utilities and documentation included
Royalty free inclusion in application software
e Routines include

— DSP Transformations — DCT, FFT with Hamming & Hanmng windowing
— DSP Filtering — FIR, IR & LMS
— Mathematics -

Fast fixed point integer multiplication & divides

Square Root, Cube Root, Trigonometric functions
Signed saturated addition

— Plus a large number of other useful functions

App[zc‘éztzom
Library

Documentation
«_«c 7

Installation and License Management | rrmsmyrsrmm—remrmmmrm

Getting Started “Fl' ;Iilhialk§léf:1;1<§ EEE
Assembler Guide =AM Dvelopar A -
Compiler, Linker and Utilities Guide Version10
Debug Target Guide om0 B
) . 7k This chapter explains some of the
— Angel, ARMulators, Semihosting 4 el L el N
1 -4 AXD Faciliti i debuggersh i
Debuggers Guide | %Egiig gn:‘rtnpdl A e
COdeV\/aI’I’IOI’ IDE GU|de GpiEraion This chapter contains the following
. & I» 7 Debugging under UNIX 5ect|\30nts: .
8 Ab tADW d ADU - . ekugger concepts
Devel.o.pers GU|de Sta dsadTDb\ of Conl D'-l L _I [] |nterfacingw\[htarqets LI
— Writing code for the ARM i LGRS
A | bl . [[[1811
valliaple In
B DV_”aTeXt online book format «On-line help from within Windows tools (just press
- Printed Manuals F1)
- PDF

*Application Notes downloadable from:
*http://www.arm.com/Documentation/AppNotes

*Technical Support FAQ at:
http://www.arm.com/DevSupp/Sales+Support/faqg.ht
ml

AXD Training
]

Command Line Tools
]

armcc - ARM C Compiler

tcc : Thumb C Compiler

armlink : Object code linker

armasm : Assembler for ARM/Thumb source code
armsd : ARM command line debugger

fromelf : File format conversion tool

Compiling and running the example
«_

e Edit following a source code.
/* hello.c Example code */
#include <stdio.h>
#include <stdlib.h> /*for size_t*/
void subroutine(const char *message)

{
printf(message);

}
int main(void)

{
const char *greeting = "Hello from subroutineWn";
printf("Hello World from mainWn");
subroutine(greeting):
printf("And Goodbye from mainWnwn");
return 0;

}

e CMD> armcc —g hello.c
e (CMD> armsd —exec __image.axf

Compilation Options

e Options
—C : Generate object code only. Doesn’t invoke the linker.
-0 <filename> : Name the generated output file as ‘filename
—s : Generate an assembly language listing.
—s —fs : Generate assembly interleaved with source code
e Use the compiler options with armcc or tcc to generate
following output file from hello.c
image.axf : An ARM executable image
source.s - An assembly source.
inter.s : A listing of assembly interleaved with source code
thumb.axf : A Thumb executable image.
thumb.s : A thumb assembly source.

armlink
«_«c 7

e Edit following files, main.c sub.c :
// main.c Example code to be used with 'sub.c'
#include <stdio.h>
extern void subroutine(void): //found in 'sub.c'
int main(void)
{
printf("Hello World from main¥n");
subroutine();
printf("And Goodbye from mainWn");
return 0;
I3
// sub.c Example code to be used with 'main.c'
#include <stdio.h>
void subroutine(void) // called by 'main.c'
{
printf("Hello from subroutineWn");
3
e CMD> armlink main.o sub.o —o link.axf /* if not used ‘ —o *, then generated
__image.axf */

e (CMD> armsd —exec link.axf

fromelf

.
e CMD> fromelf —text/c hello.o

e CMD> fromelf —text/c hello.o > hello.txt /*
save interleaved file into hello.txt */

e Open the ‘hello.txt’ with a editor

Codewarrior and AXD
]

e (reating header file

Click codewarrior icon in the Windows start menu.
Select 7ile—>new from menu.

Ensure the 7i//e tab is selected in the New dialog—box.
e Select 7ext File
e Click OK

Enter the following C structure definition
/* Struct definition */
struct DateType

{
int day;
int month;
int year;
}.

Select File Save As... from the menu.
Save as a ‘datetype.h’ in “c:WworkWdemo”

Creating new project
c

Select File—>New from menu.

At project tab, select ARM Executable Image and enter the
Project name : demo

Enter the project directory : “c:WworkWdemo”
Click OKto create the project

At the project window, demo.mcp

Debug - Contain full debug information table and very limited
optimization

Helease . No source level debug information, but full optimization
DebugRel : A trade off between the two.

From the menu, select Project—>Add Files... to locate
“month.c”, “datetype.h”

Building the project (DebugRel target)
.

From the menu select Project—>Make (or press F7)

Double click on the first error message
— The editor window is opened.

— At the top of the file, preprocessor directives contain a reference to the
macro, which has not been defined in any of the source file.

From the menu of the project window, demo.mcp, select Edit—
>DebugRel Settings

In the 7arget Settings Panels box, click ARM Compiler

Select Preprocessor tab, In the field below List of #DEFINES enter
“DATETYPE”

Click Add, then click OK
Rebuild the project by pressing F/

To show disassembled code, right—click on month.c in the project
window and select Disassemble.

Executing the example

e From the menu, select Project—>Fun

e AXD window will be opened. In the console window, enter
today’s date, e.g. 2006 06 08

e Quit AXD by selecting File—>Exit

ocessor Views SustemViews Execute Dptions

00| ||| Galml || =
Taiget | Image | Fiies | Class |
¥ ARMTTOMI

ARMZTOMI - Corsole

This progrem will read the date in the form yyyy mm dd

e.g. 1972 02 17
then display the dates of the following calendar menth.

Please type the date (ryyy mmn dd) —>

il _>l_I
System Dutput Monitor

RDI Log | DetugLag|

Loag file:

ARMulstor A051 2 [Build B05]

Fior SUPPOIt please COMtact SUPpont-sw(@arm.com

Software supplied by ARM Ltd

ARMZTDMI, BIU, Litle endian, Semihosting, Debug Comms Channel, 4GB, Mapfile,
Timer, Prcfiler, Tube, Miliseconc [20000 cycles_per_milisecond], Pagetables,
IntCHl, Tracer, RDI Codesequerces

ARM RDI 1.5.1 -» ASYNC RDI Protocol Converter ADS 1.2 [Build number 805]. Coppright (€] ARM Limited 2001
4l

)
Furring Image [N [<Ho Pass [ARMUL [RM7TOMI [calendarax

For Help, press F1

Debugging the example
c

Select Project—>Debug from the IDE menu.
Select Execute—>Go from the menu.
Select Execute—>Go from the menu again.

This time enter 2005 11 30
— The program will terminate after it has output.

— |f you use scroll bar of the console window, you will find there is a
extra day!

From the menu reload the image into the debugger.

Restart the program, and find the function body of nextday()

— Select Low—-Level Symbols from the Processor liews menu and double
clicking the nextday entry.

Set a breakpoint on the switch statement on line 40 by double
clicking in the gray region to the left of the statement.

Resume execution and enter the date 2005 11 30 again.
The program will stop at the second breakpoint.

Debugging the example
c

Display the local variables.
— Select Processor Views— lariables, or press Clr/+F.

Click on the G/obal/tab to display the global variables.

— Right click on the day, month and year fields in turn and select

Format — Decimal to change the display format of the variables:
Select Execute— Step (F10) to perform the next step in the
program.

— The default path assumes the month has 31 days, and it not correct.

ARMYTDMI - ¥ ariables
Local Glabal | Clasz I

Wariable | Walue
Eh-date ...}

Debugging the example
c

Double click on the breakpoint set on line 40 to remove it.
Set a new breakpoint on line 58 after switch statement.

Resume program execution,
— Click on the Local/tab in the Variables window again.

— You will see that the value of daysinMonth is 31, but we require
it to be 30.

— Double click on the value to edit it and change the value to 30.
Remove the breakpoint on line 58.

Restart the program and finish executing the example.
Check that the output generated by the program is correct.

Viewing registers and memory
«___ " """"/"/—"™7

From the menu reload the image into the debugger.

Select Execute— Go from the menu.

Set a breakpoint on the printf statement on line 29 by double.

Select Execute— Go from the menu, and this time enter 2005 12 25.

Open the Low—-Level Symbol/s window from the FProcessor Views menu
— Locate the date entry in the Symbo/ column.
— Right click on the date entry and select Locate using Address.
— Right click on the highlighted values in the Memory window and select
Format — Other — Size 32 — Decimal

ARMTTOMI - Memory Locate Start addre&sl[l:-:l:ul:uDD ﬂ

Tab1 - Decinal |Ta|:|2 Hex - Mo prefn-cl Tab3 - Hex - Ha prefl:-:l Tabd - Hex -t 4 I hI
Address | o a | g | c o=
O=0000BEOO 0 47854 3la 3l
0x0000EEL0 1z 2000 1
0x0000BE20 45295 0 4332033 4582848
0x0000BE30 1] Gd 1]
0x0000BE4D]] 43299 Gd d

Viewing registers and memory
«___ " """"/"/—"™7

e Open the Registers window from the FProcessor Views menu.
Restart the program, execution will stop at the breakpoint again.

e Right click on the r3 register in the Register window, and select
Format — Decimal from the context menu.

e Use the Go button to execute the while loop until r3 has the value 2.

e Double click on the highlighted value 2 in the Memory window.
Change it to 22 and press Enter.

e Use the Go button to pass through the while loop until the program ends
e Quit AXD by selecting File— Exit.

ARMFTDMI - Begizters
Begister | Value |;
ECurrent I
er D 0300000000
ferl 0x0000001F
p 2 000000000
I
b rd 000000019
. 0x0000000C
v 0x0000BELD
—_— 0300000000
rd 0x00000000
B e =l

Interleaving source code
«_«c 7

e Sclect Project— Debug from the IDE menu.

e Start executing the image by selecting Execute—
Go from the AXD menu (F5).

e Right click on the source code window and select
/nterleave adisassembly

e Step through the code until you have passed the
date entry point and the next two days have been
output. (F70)

e Quit AXD by selecting File— Exit.

Using the command line
c

Select Project— Debug from the IDE menu to launch AXD.
Select System Views — Command Line Interface from the menu.

Start program execution by using the go command at the Debug > prompt
- Debug > go
- Debug > break month.c|40
- Debug > go
Enter the date 2000 11 30 in the Console window when prompted.
— Debug > print daysinMonth dec
— Debug > format dec
— Debug > print date.day
— Debug > print date.month
— Debug > print date.year
— Debug > unbreak #2
- Debug > break month.c|58
- Debug > go
— Debug > print daysinMonth
— Debug > let daysinMonth 30
- Debug > go
- Debug > memory @date +0xc 32
— Debug > step
- Debug > registers current
— Debug > unbreak #2
- Debug > go

Using script file in AXD
]

e Sclect Project— Debug from the IDE menu to
launch AXD

e Ensure the debugger Command Window is
currently in focus.
— Debug: obey c:WworkWdemoWmonth.ixt

e Enter the date 2005 11 30 in the Console window
when prompted.

e Check the output is correct in the Console
window then quit the debugger to finish the
exercise.

<
JTAG 20

Debugger / Emulator
.

e |n—circuit Emulator ?

— Hardware device used during the development of
embedded systems.

— Have a hardware and a software element, which are
separate but tightly interdependent.

— Allow the software elements to be run and tested on
actual hardware.
e Debugger ?
— used for tracing program execution.
— used to test and debug software.

— A tool or program designed to help detect, locate, and
correct errors in another program.

Debugger / Emulator
.

e CPU Emulator
— Include the same or higher CPU functions than target CPU.

— Uses emulation memory and provide Trace & Trigger and
Profiling & performance monitor functions for powerful
debugging.

— Very high expense, and it is difficult to manufactuere emulator
if CPU clock is more than 100Mhz.

— Since all CPU pins have to be connected with emulator, it is
hard to probe.

e JTAG or BDOM type debugger
— Utilize JTAG or BOM port.

— using a little number of pin (TDI, TDO, TMS, TCK, TRST, VCC,
GND...), design and interfaces are simple.

— As not use target resource (memory, CPU), can debug the
target without effect on execution.

Debugger / Emulator

e Embedded trace Macrocell (ETM)

— Module to provide functions for tracing data
and instruction to real time.

— Include ICE functions. (Trigger & Filter Logic)

— Capture the core status during operation
before and after a specific event occurs.

— external trace analyzer collects and analyzies
the inforamtion.

JTAG / IEEE1149.1
.

e Background
— Begins the study for testing PCB(Printed Circuit Board)

— Advences in technology of packaging devices and
mounting components.

« Advent of SMD, High density of pins
o Difficult to probe pins with previous methods.

e Suggestion

— Embedded standard logic (TAP) and test pin (Boundary
Scan Cell) for testing on a chip.

— Standardized tests

e Boundary Scan Architecture
e Test Access Port(TAP)

Extended JTAG / IEEE1149.1
«_

e Extended JTAG Interface.
— On—-chip Debugging.

- I\{Iemory (DRAM, Flash...) access, logic device control, program
using...

e JTAG Interface Signal
— NnTRST : test reset
— TMS : test mode select
— TDI : test data input
— TDO : test data output
— TCK : test clock
e Added additional pins for debugging.
— NRESET(=nSRST): chip reset
— VTref (reference voltage)
- DBGRQ, DBGACK (for external trigger signal)

Device / JTAG Architecture

e JTAG block has a
CorelLogic for test
andothers purpose.

e JTAG block consists of
TAP Controller and

Registers, and transfers
data with TDI, TDO

e JITAG operation is
controlled by TAP
controller.

IEEE 1149.1 Device Architecture

Boundary Scan Test
c

e Boundary—scan cell
— Capture data on its parallel input Pl
— Update data onto its parallel output PO
— Serially scan data from SO to its neighbor's S|

— PRAahAvin tranenaranths DI nacene +A DN

Boundary-Scan Cell
Serial Serjal
Dataln = § / /"C Pin 519”?" * Data Out

S| 1 4 X
Pl PO
c
SO 1 .

Inrerconneoﬂon
to Be Tested

JTAG Device 1 JTAG Device 2

Boundary Scan Path
with Daisy Chain

Bnundurg;ﬁcan cell

Serial
datas In

m J
- 1 Seriel

data out
! S

Serial test lnterconnect System Interconnect

JTAG Pin Description

«_
e ARM7/ARM9 JTAG Pin Description

VTref ||® 1 2 ® | NC

nTRST ||® 3 4 ®|| GND

™I ||®@5 ¢ @ aND

vecs||(® 1 2 @ GND T™MS @7 8 ®| GND
nTRST||® 3 4 ®|| GND TcK ||@ 9 10 ®|| GND
TDI[l®@ 5 ¢ ®| GND RTCK ||® 11 12 ®|| GND

T™s ||®@ 7 8 ®|| GND TDO ||® 13 14 ®|| GND

TCK1®9 10 @/ GND nSRST ||® 15 16 ®| GND

TDO | ® 1112 ®|| nRESET EDBGRQ ||® 17 18 @®| GND

vees ||® 1314 @) GND DBGACK ||® 19 20 ®[| GND

14 pin connector 20 pin connector AlH| F{HIE{ 22

JTAG Pin Description
]

o \Tref

Input of target reference voltage.
Not used for suppling power for JTAG equipment.

e NSRST (=nRESET)

Used for detecting reset of target or resetting target CPU.
Need pull up resistor to prevent target from resetting unwanted.

e NIRST, TOI, TMS, TCK

Need nTRST, TDI, TMS with pull up resistors.
Recommend TCK with pull-down resistor.

Have to be nTRST with pull up resistor and TCK with pull down
resistor for hand—over between tools when using several tools
such as multicore debugging environment.

JTAG Pin Description
]

e RTCK

— Return Test Clock : Input signal from target JTAG port (or
processor) to debugger.

-~ Clock signal synchronized TCK clock with target processor
core clock.

— have to use this signal to synchronize JTAG port with
processor internal clock.

e for example : specific processor such as ARMXX-S (ARM7TDMI-S,
ARMYEJ-S ...)

-~ Adaptive Clock Timing

° ggaerate next TCK after waiting for returned RTCK as a change of

e JTAG clock is variable.

e D0
— Tools input, and need not pull-up of pull-down resistor.

Considerations of JTAG Design

e \When design a JTAG circuit, follow the
design guide of chip vendor,.

e Have to supply VIref with core voltage but
not 1/O voltage.

e \When using ARMxx—S processor core,
have to use the RTCK.

Multi—ICE Run Control Unit
]

e Change the debugger Debugger | | Debugger
command to JTAG signal. | Mot | | ™50
e ARM core has to include T I TTApop
EmbeddedICE logic. VISR | Windows
e Can select JTAG TCK oo
within range form 2.44Khz
to 10Mhz.
JTAG
ARM ARM Sg

Embedded|CE Logic

| Debugger and Multi-ICE server
(can be run on separate machines)

—> Control
> Address
- | Data
5 wi EmbeddedICE
wire -
. MygE || JTAG BREAKPT Logic-RT
| “ —
ARM

Semihosting

- SWI
Library
Application Code Code Handler
/ Communication
with debugger
printf(“hello\n”); running on host
...‘.—
Library code is executed on ARM target but some low-
level I/O is provided by host.

SWI mechanism serves host access.

» SWI interface is common in ARMulator, Angel and
Multi-ICE.

~ Semihosted programs will run on all of ARM targets
without porting.

have to be connected with Debug tools to provide such
a-function.

