
ARM Developer Suite Overview

Overview of ADS 1.2

Integrated set of software development tools for embedded ARM
development

- from evaluating initial prototype software through to producing final optimized
ROM code

Released December 2001
Supported hosts

- IBM compatible PCs with Windows 95, 98, 2000, ME or NT4
- Sun workstations with Solaris 2.6, 2.7 or 2.8
- HP workstations with HPUX 10.20, 11
- Red Hat Linux 6.2 & 7.1

Full version License managed using FlexLM
Evaluation version available
Third-party tool-chains are also available:

http://www.arm.com/DevSupp/

New in ADS 1.2

Support for latest ARM cores
ARM926EJ-S, ARM9EJ-S, VFPv2

Support for Architecture V5TEJ
ARMulator simulates execution of Java bytecode
Bytecode display in Jazelle state
Hosted on Red Hat Linux (6.2 and 7.1)
Librarian can merge libraries
Finer grained placement of code and data using pragmas
New linker option for relocatable code
Parallel assembler and object code output from compilers

Main components

ANSI C compilers - armcc and tcc
ISO / Embedded C++ compilers - armcpp and tcpp
ARM / Thumb assembler - armasm
Linker - armlink
Windows IDE - CodeWarrior
Debugger - AXD
armsd also supplied for backwards compatibility

Format convertor - fromelf
Librarian - armar
C and C++ libraries
Instruction set simulator - ARMulator
Also ships with
ARM Firmware Suite
ARM Application Library
RealMonitor

Using the Core Tools

CodeWarrior

AXD

C / C++ Compilers - Key Features

Fully ANSI compliant C compilers
ISO / Embedded C++ compilers
Support for all ARM processors (with ‘-cpu’)
e.g. ARM7TDMI, StrongARM, ARM9TDMI, ARM9E, ARM10, Xscale

Allows source-level debugging of optimized code:
-O0 : best debug view, no optimization (default with -g) “Debug”
-O1 : most optimizations, good debug view with -g “DebugRel”
-O2 : full optimization (the default), limited debug view “Release”

Support for ROPI / RWPI
Inline assembler
Interleaved C and Assembler listing (with ‘-S -fs’)

C / C++ Compiler - Data Types

These data types are supported:
- char 8 bit byte
- short 16 bit half-word
- int 32 bit word
- long 32 bit integer
- float 32 bit IEEE single-precision
- double 64 bit IEEE double-precision
- pointers 32 bits
- long long 64 bit integer

All above are signed by default, except pointer, and
char (which is unsigned by default and can be
made signed with -zc)

Supplied Libraries

ANSI C library
- Full file handling, string, maths, etc., support on the target
- By default uses semihosted SWI’s to access host debugger

facilities
e.g. file I/O

- Retargetable without need for rebuild kit
Suitable for embedded use - no separate embedded variant

- Automatic selection of the correct library variant
depending on byte order, position independence, stack checking,

etc

- Also contains run time support functions and floating point
support

C++ library includes:
Rogue Wave Standard C++ library version 2.01
Run time support functions for the C++ compiler.

Semihosting

Supported Targets

ARMulator

Software simulation of an ARM core
Instruction accurate
- Allows program execution to be verified
- Counts elapsed memory cycles
- Allows benchmarking of systems when given memory map and clock
speed

Configurable for all ARM cores
- latest cached cores, e.g ARM946E, ARM966E, ARM10 (incl VFP),
XScale

Tracing support
Customizable - Extension kit supplied
- Models are written in C, so easy to add new peripheral models with
Visual C++ (Interrupt controller and Timers already supplied)
- Can also simulate IRQ or FIQ interrupts ($irq, $fiq)
- ADS 1.2 Debug Target Guide has details on writing new models

Multi-ICE

Angel Debug Monitor

Debug Monitor which runs on target hardware
- Does not require ARM core to have an EmbeddedICE logic
- Processor never physically halted - useful for real time

applications
- Application code must run in RAM (to set breakpoints, single-

step, etc.)

Communicates with host debugger via ADP (Angel Debug
Protocol)
- normally over serial link

Sources supplied as part of the ARM Firmware Suite (AFS)
Written mainly in C, to ease porting to new hardware
Ports to third party boards available from other vendors

ARM Firmware Suite

Library of low-level board software and utilities
- uHAL (Hardware Abstraction Layer)

→Masks hardware differences between platforms from other
firmware components and applications

→Designed to speed the development cycle by providing code
for System Initialization, Memory Management and Interrupt
Handling/Installation (including timer support).

- Boot Monitor
- Angel Debug Monitor
- Flash Management Library
- PCI Management (for Integrator /AP)

Shipped with latest ARM boards and with ADS

ARM Application Library

A highly optimized software suite of useful routines, algorithms
and applications
Handcrafted by ARM architecture experts
- excellent examples of optimized ARM code

Full source code, build utilities and documentation included
Royalty free inclusion in application software
Routines include
- DSP Transformations - DCT, FFT with Hamming & Hanning windowing
- DSP Filtering - FIR, IIR & LMS
- Mathematics -

Fast fixed point integer multiplication & divides
Square Root, Cube Root, Trigonometric functions
Signed saturated addition

- Plus a large number of other useful functions

Documentation

Installation and License Management
Getting Started
Assembler Guide
Compiler, Linker and Utilities Guide
Debug Target Guide
- Angel, ARMulators, Semihosting

Debuggers Guide
CodeWarrior IDE Guide
Developers Guide
- Writing code for the ARM

Available in
- DynaText online book format
- Printed Manuals
- PDF

•On-line help from within Windows tools (just press
F1)
•Application Notes downloadable from:

•http://www.arm.com/Documentation/AppNotes

•Technical Support FAQ at:
•http://www.arm.com/DevSupp/Sales+Support/faq.ht
ml

AXD Training

Command Line Tools

armcc : ARM C Compiler

tcc : Thumb C Compiler

armlink : Object code linker

armasm : Assembler for ARM/Thumb source code

armsd : ARM command line debugger

fromelf : File format conversion tool

Compiling and running the example

Edit following a source code.
/* hello.c Example code */
#include <stdio.h>
#include <stdlib.h> /*for size_t*/
void subroutine(const char *message)
{

printf(message);

}
int main(void)

{
const char *greeting = "Hello from subroutine₩n";
printf("Hello World from main₩n");
subroutine(greeting);
printf("And Goodbye from main₩n₩n");
return 0;

}

CMD> armcc –g hello.c
CMD> armsd –exec __image.axf

Compilation Options

Options
-c : Generate object code only. Doesn’t invoke the linker.

-o <filename> : Name the generated output file as ‘filename’
-s : Generate an assembly language listing.

-s -fs : Generate assembly interleaved with source code

Use the compiler options with armcc or tcc to generate
following output file from hello.c
image.axf : An ARM executable image

source.s : An assembly source.

inter.s : A listing of assembly interleaved with source code

thumb.axf : A Thumb executable image.

thumb.s : A thumb assembly source.

armlink

Edit following files, main.c sub.c :
// main.c Example code to be used with 'sub.c'
#include <stdio.h>
extern void subroutine(void); //found in 'sub.c'
int main(void)
{
printf("Hello World from main₩n");
subroutine();
printf("And Goodbye from main₩n");
return 0;
}
// sub.c Example code to be used with 'main.c'
#include <stdio.h>
void subroutine(void) // called by 'main.c'
{
printf("Hello from subroutine₩n");
}

CMD> armlink main.o sub.o -o link.axf /* if not used ‘ –o ‘, then generated
__image.axf */
CMD> armsd -exec link.axf

fromelf

CMD> fromelf -text/c hello.o

CMD> fromelf -text/c hello.o > hello.txt /*
save interleaved file into hello.txt */

Open the ‘hello.txt’ with a editor

Codewarrior and AXD

Creating header file
– Click codewarrior icon in the Windows start menu.
– Select file->new from menu.
– Ensure the file tab is selected in the New dialog-box.

Select Text File
Click OK

– Enter the following C structure definition
/* Struct definition */
struct DateType
{

int day;
int month;
int year;

};

– Select File Save As… from the menu.
– Save as a ‘datetype.h’ in “c:₩work₩demo”

Creating new project

Select File->New from menu.
At project tab, select ARM Executable Image and enter the
Project name : demo
Enter the project directory : “c:₩work₩demo”
Click OK to create the project
At the project window, demo.mcp
Debug : Contain full debug information table and very limited

optimization
Release : No source level debug information, but full optimization
DebugRel : A trade off between the two.

From the menu, select Project->Add Files… to locate
“month.c”, “datetype.h”

Building the project (DebugRel target)

From the menu select Project->Make (or press F7)
Double click on the first error message
- The editor window is opened.
- At the top of the file, preprocessor directives contain a reference to the

macro, which has not been defined in any of the source file.

From the menu of the project window, demo.mcp, select Edit-
>DebugRel Settings
In the Target Settings Panels box, click ARM Compiler
Select Preprocessor tab, In the field below List of #DEFINEs enter
“DATETYPE”
Click Add, then click OK
Rebuild the project by pressing F7
To show disassembled code, right-click on month.c in the project
window and select Disassemble.

Executing the example

From the menu, select Project->Run
AXD window will be opened. In the console window, enter
today’s date, e.g. 2006 06 08
Quit AXD by selecting File->Exit

Debugging the example

Select Project->Debug from the IDE menu.
Select Execute->Go from the menu.
Select Execute->Go from the menu again.
This time enter 2005 11 30
- The program will terminate after it has output.
- If you use scroll bar of the console window, you will find there is a

extra day!

From the menu reload the image into the debugger.
Restart the program, and find the function body of nextday()
- Select Low-Level Symbols from the Processor Views menu and double

clicking the nextday entry.

Set a breakpoint on the switch statement on line 40 by double
clicking in the gray region to the left of the statement.
Resume execution and enter the date 2005 11 30 again.
The program will stop at the second breakpoint.

Debugging the example

Display the local variables.
- Select Processor Views→ Variables, or press Ctrl+F.

Click on the Global tab to display the global variables.
- Right click on the day, month and year fields in turn and select
Format → Decimal to change the display format of the variables:

Select Execute→ Step (F10) to perform the next step in the
program.
- The default path assumes the month has 31 days, and it not correct.

Debugging the example

Double click on the breakpoint set on line 40 to remove it.
Set a new breakpoint on line 58 after switch statement.
Resume program execution,
- Click on the Local tab in the Variables window again.
- You will see that the value of daysInMonth is 31, but we require

it to be 30.
- Double click on the value to edit it and change the value to 30.

Remove the breakpoint on line 58.
Restart the program and finish executing the example.
Check that the output generated by the program is correct.

Viewing registers and memory

From the menu reload the image into the debugger.
Select Execute→ Go from the menu.
Set a breakpoint on the printf statement on line 29 by double.
Select Execute→ Go from the menu, and this time enter 2005 12 25.
Open the Low-Level Symbols window from the Processor Views menu
- Locate the date entry in the Symbol column.
- Right click on the date entry and select Locate using Address.
- Right click on the highlighted values in the Memory window and select
Format → Other → Size 32 → Decimal

Viewing registers and memory

Open the Registers window from the Processor Views menu.
Restart the program, execution will stop at the breakpoint again.
Right click on the r3 register in the Register window, and select

Format → Decimal from the context menu.

Use the Go button to execute the while loop until r3 has the value 2.
Double click on the highlighted value 2 in the Memory window.

Change it to 22 and press Enter.

Use the Go button to pass through the while loop until the program ends
Quit AXD by selecting File→ Exit.

Interleaving source code

Select Project→ Debug from the IDE menu.

Start executing the image by selecting Execute→
Go from the AXD menu (F5).

Right click on the source code window and select
Interleave disassembly

Step through the code until you have passed the
date entry point and the next two days have been
output. (F10)

Quit AXD by selecting File→Exit.

Using the command line

Select Project→ Debug from the IDE menu to launch AXD.
Select System Views → Command Line Interface from the menu.
Start program execution by using the go command at the Debug > prompt

- Debug > go
- Debug > break month.c|40
- Debug > go

Enter the date 2000 11 30 in the Console window when prompted.
- Debug > print daysInMonth dec
- Debug > format dec
- Debug > print date.day
- Debug > print date.month
- Debug > print date.year
- Debug > unbreak #2
- Debug > break month.c|58
- Debug > go
- Debug > print daysInMonth
- Debug > let daysInMonth 30
- Debug > go
- Debug > memory @date +0xc 32
- Debug > step
- Debug > registers current
- Debug > unbreak #2
- Debug > go

Using script file in AXD

Select Project→ Debug from the IDE menu to
launch AXD

Ensure the debugger Command Window is
currently in focus.
- Debug: obey c:₩work₩demo₩month.txt

Enter the date 2005 11 30 in the Console window
when prompted.

Check the output is correct in the Console
window then quit the debugger to finish the
exercise.

JTAG 소개

Debugger / Emulator

In-circuit Emulator ?
- Hardware device used during the development of

embedded systems.
- Have a hardware and a software element, which are

separate but tightly interdependent.
- Allow the software elements to be run and tested on

actual hardware.

Debugger ?
- used for tracing program execution.
- used to test and debug software.
- A tool or program designed to help detect, locate, and

correct errors in another program.

Debugger / Emulator

CPU Emulator
- Include the same or higher CPU functions than target CPU.
- Uses emulation memory and provide Trace & Trigger and

Profiling & performance monitor functions for powerful
debugging.

- Very high expense, and it is difficult to manufactuere emulator
if CPU clock is more than 100Mhz.

- Since all CPU pins have to be connected with emulator, it is
hard to probe.

JTAG or BDM type debugger
- Utilize JTAG or BDM port.
- using a little number of pin (TDI, TDO, TMS, TCK, TRST, VCC,

GND…), design and interfaces are simple.
- As not use target resource (memory, CPU), can debug the

target without effect on execution.

Debugger / Emulator

Embedded trace Macrocell (ETM)
- Module to provide functions for tracing data

and instruction to real time.

- Include ICE functions. (Trigger & Filter Logic)

- Capture the core status during operation
before and after a specific event occurs.

- external trace analyzer collects and analyzies
the inforamtion.

JTAG / IEEE1149.1

Background
- Begins the study for testing PCB(Printed Circuit Board)
- Advences in technology of packaging devices and

mounting components.
Advent of SMD, High density of pins
Difficult to probe pins with previous methods.

Suggestion
- Embedded standard logic (TAP) and test pin (Boundary

Scan Cell) for testing on a chip.
- Standardized tests

Boundary Scan Architecture
Test Access Port(TAP)

Extended JTAG / IEEE1149.1

Extended JTAG Interface.
- On-chip Debugging.
- Memory (DRAM, Flash…) access, logic device control, program

fusing…
JTAG Interface Signal
- nTRST : test reset
- TMS : test mode select
- TDI : test data input
- TDO : test data output
- TCK : test clock

Added additional pins for debugging.
- nRESET(=nSRST): chip reset
- VTref (reference voltage)
- DBGRQ, DBGACK (for external trigger signal)

Device / JTAG Architecture

JTAG block has a
CoreLogic for test
andothers purpose.

JTAG block consists of
TAP Controller and
Registers, and transfers
data with TDI, TDO

JTAG operation is
controlled by TAP
controller.

Boundary Scan Test

Boundary-scan cell
- Capture data on its parallel input PI

- Update data onto its parallel output PO

- Serially scan data from SO to its neighbor's SI

- Behave transparently: PI passes to PO

Boundary Scan Path
with Daisy Chain

JTAG Pin Description

ARM7/ARM9 JTAG Pin Description

JTAG Pin Description

VTref
– Input of target reference voltage.

– Not used for suppling power for JTAG equipment.

nSRST (=nRESET)
– Used for detecting reset of target or resetting target CPU.

– Need pull up resistor to prevent target from resetting unwanted.

nTRST, TDI, TMS, TCK
– Need nTRST, TDI, TMS with pull up resistors.

– Recommend TCK with pull-down resistor.

– Have to be nTRST with pull up resistor and TCK with pull down
resistor for hand-over between tools when using several tools
such as multicore debugging environment.

JTAG Pin Description

RTCK
– Return Test Clock : Input signal from target JTAG port (or

processor) to debugger.
– Clock signal synchronized TCK clock with target processor

core clock.
– have to use this signal to synchronize JTAG port with

processor internal clock.
for example : specific processor such as ARMXX-S (ARM7TDMI-S,
ARM9EJ-S …)

– Adaptive Clock Timing
Generate next TCK after waiting for returned RTCK as a change of
TCK.
JTAG clock is variable.

TDO
– Tools input, and need not pull-up of pull-down resistor.

Considerations of JTAG Design

When design a JTAG circuit, follow the
design guide of chip vendor.

Have to supply VTref with core voltage but
not I/O voltage.

When using ARMxx-S processor core,
have to use the RTCK.

Multi-ICE Run Control Unit

Change the debugger
command to JTAG signal.

ARM core has to include
EmbeddedICE logic.

Can select JTAG TCK
within range form 2.44Khz
to 10Mhz.

EmbeddedICE Logic

Semihosting

