
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.7 Programming In C

Dr Jingxian WuDr. Jingxian Wu
wuj@uark.edu

2

OUTLINE

• Data types and time delay

• I/O programming and Logic operations

• Data conversion programs• Data conversion programs

• Accessing code ROM space

DATA TYPE: C V.S. ASSEMBLY
3

• C V.S. Assembly language
– Advantage of C

• It’s easier to program in C compared to assembly.
• C code can be easily ported to other microcontroller, while assembly

language can usually be used for 1 type of microcontroller
• There are lots of function libraries written in C
d f bl l– Advantage of assembly language
• The hex file generated by assembly is usually smaller
• Code efficiency is higher (faster)

• C programming
– C has become the standard for embedded system programming

• Object oriented language (C++, Java, C#) are usually not as efficient as C
• C is flexible

– One of the main concerns in C programming for embedded system is to
generate a hex file that is small in size

• We need to pay attention to the size of variables during programming

DATA TYPE
D t t

4

• Data types
– unsigned char, signed char, unsigned int, signed int, sbit, bit and sfr

• unsigned char
– 8-bit. Most popular data type, matches most registers. Represent ASCII code or integers8 bit. Most popular data type, matches most registers. Represent ASCII code or integers

in the range of 0 ~ 255.
– Example: write a C program to send the ASCII code of 0, 1, 2, A, B, C to port 1 (demo)

#include <reg51.h> // the definition of registers
void main (void)
{

unsigned char mynum[] = “012ABC”;
unsigned char z;
for (z = 0; z <=5; z++)

P1 = mynum[z]; //port 1 is denoted as P1y p
}

– Example: write a C program to toggle all bits of P2 continuously
#include <reg51.h>
void main(void)
{

for (; ;) // infinite loop
{

P1 = 0x55; // hex number: 0x55
P1 = 0xAA;

}
}

DATA TYPE
i d h

5

• signed char
– an 8-bit number with the most significant bit representing sign (+ or -)

• Range: -128 ~ 127 (range of unsigned char: 0 ~ 255)
Example: write a C program to send 3 to 3 to port 1– Example: write a C program to send -3 to 3 to port 1

#include <reg51.h>
void main(void)
{

char mynum[] = {-3 -2 -1 0 1 2 3}; // signed charchar mynum[] {-3,-2,-1,0,1,2,3}; // signed char
unsigned char z;
for (z = 0; z<=6; z++)

P1 = mynum[z];
}

i i• unsigned int
– 16-bit (needs to registers), range: 0 ~ 65535 (FFFFH)
– E.g.: unsigned int a;
i d i t• signed int
– 16-bit, MSB represents sign. Range: -32768 ~ 32767
– E.g.: int a;

Since int requires twice as many memory space as char use unsigned or– Since int requires twice as many memory space as char, use unsigned or
signed int only when the number cannot be represented with unsigned or
signed char.

VLSI
강조

DATA TYPE
bit

6

• sbit
– Single bit, used to access single-bit addressable registers
– Example: write a C program to toggle bit D0 of P1 50,000 times

#i l d 51 h#include <reg51.h>
sbit MYBIT = P1^0;
void main(void)
{

unsigned int z; ; 50000 times, cannot use char
for (z=0; z<=50000;z++)
{

MYBIT = 0;
MYBIT = 1;

}
}

• bit
– Used to access single bit of bit-addressable RAM (20H – 2FH)

E ample: bit m bit 0; // the compiler ill assign a RAM space to a– Example: bit mybit = 0; // the compiler will assign a RAM space to a
//automatically

• sfr
– Used to access special function registersUsed to access special function registers
– example: sfr ACC = 0xE0; // the address of reg. A

VLSI
강조

VLSI
강조

DATA TYPE: TIME DELAY
7

• Time delay
– Two methods to achieve time delay:

• Timer (Ch. 9)
• Loop• Loop

– When using loops in C, it’s difficult to determine the exact time delay by means of
calculation

• For the same C code, different compilers usually will generate different assembly
codes

• Thus the same C codes with different compilers might generate different delays
• The only way to know the exact delay is through oscilloscope.

#include <reg51 h>#include <reg51.h>
void main(void)
{

unsigned int x;
while(1)()
{

P1 = 0x55;
for (x=0;x<40000;x++); //delay
P1=0xAA;
f (0 40000 ++) //d lfor (x=0;x<40000;x++); //delay

}
}

VLSI
강조

8

OUTLINE

• Data types and time delay

• I/O programming and Logic operations

• Data conversion programs• Data conversion programs

• Accessing code ROM space

I/O PROGRAMMING
B t i I/O

9

• Byte size I/O
– Example: write a program to get a byte of data from P0. If it’s less than 100,

send it to P1; otherwise send it to P2

• Self study: examples 7-9, 7-10y p ,

I/O PROGRAMMING
10

• Bit-addressable I/O Programming
– Example: write a program to monitor bit P1.5. If it is high, send 55H to P0;

otherwise send AAH to P2

I/O PROGRAMMING: SFR REGISTERS
11

• Access SFR register
– Use sfr or sbit
– Example: read P0, send the result to P1; read in the value of P2.6

sfr regA = 0xE0;
sfr P0 = 0x80;
sfr P1 = 0x90;
sbit inbit = 0xA6; // bit address for P2^6sbit inbit 0xA6; // bit address for P2 6
bit mybit; // compiler will automatically allocate memory to mybit
void main(void)
{

unsigned int z;unsigned int z;
P0 = 0xff; // input mode
inbit = 1; //input mode
for (z = 0; z<50000; z++)
{{

regA = P0;
P1 = regA;
mybit = inbit; //read P2^6 to mybit

}
}

VLSI
노트
P2 Bit 단위 주소

VLSI
노트
Direct address mode for SFR

LOGIC
l i t i C

12

• logic operators in C
– && (and), || (or), ! (not)
– Example: if (var1 < 3 && var2 == 1)

if (!(var > 5))if (!(var > 5))
• Bit-wise logic operators

– Bit-by-bit logical operations: & (and), | (or), ^ (xor), ~ (not)
– Shifting: << (shift to left) >> (shift to right): NOT cyclic shift!Shifting: << (shift to left) >> (shift to right): NOT cyclic shift!
– Example

#include <reg51.h>
void main(void)()
{

P0=0x35 & 0x0F;
P1=0x04 | 0x68;
P2=0x04 ^ 0x78;
P3=~0x55;
P0 = 0x35 << 3;

}}

VLSI
노트
Bitwise in Multiple bits

Jaehee yoo
스티커 노트
True false variable 단위

LOGIC: DATA SERIALIZATION
13

• Data serialization
– 1. using serial port (Ch. 10)
– 2. using shifting operators
– Example: write a C program to bring in a byte of data serially one bit at a time

via P1.0. LSB should come first
#include <reg51.h>
bi bsbit P1b0 = P1^0;

sbin ACCMSB = ACC^7;
void main(void)
{

unsigned char x;
for (x=0; x<8; x++)
{

ACCMSB = P1B0;
ACC = ACC >> 1;

}
}

14

OUTLINE

• Data types and time delay

• I/O programming and Logic operations

• Data conversion programs• Data conversion programs

• Accessing code ROM space

DATA CONVERSION: PACKED BCD TO ASCII
15

• Packed BCD to ASCII
– Recall: packed BCD � unpacked BCD � ASCII
– Example: Write a C program to convert packed BCD 0x29 to ASCII, send the

l P1 d P2result to P1 and P2
#include <reg51.h>
void main(void)
{{

unsigned char x, y, z;
unsigned char packedBCD = 0x29;
x = packedBCD & 0x0F; // extract low nibble
P1 = x | 0x30; // unpacked BCD�ASCII
x = packedBCD & 0xF0; //extract high nibble
y = x>>4; // shift it to low nibble
P2 = y | 0x30; //unpacked BCD � ASCII

}

VLSI
줄 긋기

DATA CONVERSION: ASCII TO BCD
16

• ASCII to packed BCD
– ASCII � unpacked BCD � packed BCD
– Example: Write C program to convert “47” to packed BCD

VLSI
줄 긋기

DATA CONVERSION: BINARY TO ASCII
Bi (d i l) t ASCII

17

• Binary (or decimal) to ASCII
– iteratively divided by 10 and keep the remainder
– Example: convert 0xFD = 1111 1101 = 253D to ASCII: ‘2’, ‘5’, ‘3’

#include <reg51 h>#include <reg51.h>
void main(void)
{

unsigned char quotient, remainder, binbyte;unsigned char quotient, remainder, binbyte;
binbyte = 0xFD; //0xFD=253
quotient = binbyte/10; // quotient = 25
remainder = binbyte % 10; // remainder = 3
P0 = remainder | 0x30; // P0 = ‘3’
binbyte = quotient; // binbyte = 25;
quotient = binbyte/10; // quotient = 2
remainder = binbyte%10; // remainder = 5
P1 = remainder | 0x30; // P1 = ‘5’
P2 = quotient | 0x30; // P1 = ‘2’

}}

VLSI
강조

VLSI
강조

VLSI
강조

VLSI
노트
To output as ASCII

18

OUTLINE

• Data types and time delay

• I/O programming and Logic operations

• Data conversion programs• Data conversion programs

• Accessing code ROM space

RAM AND ROM
19

• In 8051, data can be stored in
– RAM (e.g. MOV)
– ROM (e.g. MOVC)
– External ROM (e.g. MOVX)

• RAM
– Compiler will automatically allocate RAM space for declared variables

(demo)
• R0 – R7: bank 0 (00H – 07H)
• Variables (including array): address 08 and beyond
• stack: address right after variables.

RAM AND ROM
20

• Accessing ROM in C
– To require the compiler store data in ROM, use the “code” keyword

• Without code keyword, all the data will be stored in RAM
– The compiler will automatically allocate ROM space for the variables.
– Example

#include <reg51.h>
void main(void)
{

code unsigned char mynum[] = “ABCDEF”;
unsigned char z;
for (z = 0; z<=6; z++)

P1 = mynum[z];
}

Jaehee yoo
밑줄

Jaehee yoo
밑줄

