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DATA TYPE: C V.S. ASSEMBLY

« C V.S. Assembly language
— Advantage of C
 It’s easier to program in C compared to assembly.

» C code can be easily ported to other microcontroller, while assembly
language can usually be used for 1 type of microcontroller

» There are lots of function libraries written in C

— Advantage of assembly language
* The hex file generated by assembly is usually smaller
» Code efficiency is higher (faster)

 C programming

— C has become the standard for embedded system programming
* Object oriented language (C++, Java, C#) are usually not as efficient as C
» C s flexible

— One of the main concerns in C programming for embedded system is to
generate a hex file that is small in size

* We need to pay attention to the size of variables during programming



DATA TYPE

* Data types
— unsigned char, signed char, unsigned int, signed int, sbit, bit and sfr

« unsigned char

— 8-bit. Most popular data type, matches most registers. Represent ASCII code or integers
in the range of 0 ~ 255.

— Example: write a C program to send the ASCII code of 0, 1, 2, A, B, C to port 1 (demo)
#include <reg51.h> // the definition of registers
void main (void)

{
unsigned char mynum[] = “012ABC”;

unsigned char z;
for (z=0; z <=5, z++)
P1 =mynum][z]; //port1 is denoted as P1
}

— Example: write a C program to toggle all bits of P2 continuously

#include <reg51.h>
void main(void)

{
for(;;) // infinite loop
{
P1 =0x55; // hex number: 0x55
P1 =0xAA;
}



DATA TYPE

e signed char
— an 8-bit number with the most significant bit representing sign (+ or -)
» Range: -128 ~ 127 (range of unsigned char: 0 ~ 255)
— Example: write a C program to send -3 to 3 to port 1

#include <reg51.h>
void main(void)

{
char mynum[] = {-3,-2,-1,0,1,2,3}; // signed char

unsigned char z;
for (z = 0; z<=6; z++)
P1 = mynum][z];

e unsigned int
— 16-bit (needs to registers), range: 0 ~ 65535 (FFFFH)
— E.g.: unsigned int a;
» signed int
— 16-bit, MSB represents sign. Range: -32768 ~ 32767
— E.g.:inta;
— Since int requires twice as many memory space as char, use unsigned or

signed int only when the number cannot be represented with unsigned or
signed char.


VLSI
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DATA TYPE

* sbhit
— Single bit, used to access single-bit addressable registers
— Example: write a C program to toggle bit DO of P1 50,000 times

#include <reg51.h>
sbit MYBIT = P10;
void main(void)

{

unsigned int z;; 50000 times, cannot use char
for (z=0; z<=50000;z++)

{
MYBIT = 0;
MYBIT = 1;

* bit
— Used to access single bit of bit-addressable RAM (20H — 2FH)

— Example: bit mybit = 0; // the compiler will assign a RAM space to a
//automatically

o sfr

— Used to access special function registers
— example: sfr ACC = 0xEQ; // the address of reg. A
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DATA TYPE: TIME DELAY

Time delay

Two methods to achieve time delay:
* Timer (Ch. 9)
 Loop

When using loops in C, it’s difficult to determine the exact time delay by means of
calculation

* For the same C code, different compilers usually will generate different assembly
codes

* Thus the same C codes with different compilers might generate different delays
» The only way to know the exact delay is through oscilloscope.

#include <reg51.h>
void main(void)
{
unsigned int x;
while(1)
{
P1 =0x55;
for (x=0;x<40000;x++); //delay
P1=0xAA;
for (x=0;x<40000;x++); //delay
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OUTLINE

* 1/O programming and Logic operations



/0 PROGRAMMING

* Byte size 1/0

— Example: write a program to get a byte of data from PO. If it’s less than 100,
send it to P1; otherwise send it to P2

#include <regS5l.h>
void main (veid)

{

unsigned char mybyte;

| PO=0xFF; //make PO an input port
while (1)
{

mybyte=R0; //get a byte from PO

if (mybyte<100)
Pl=mybyte; //send it to P1 if less than 100

else
P2=mybyte; //send it to P2 if more than 100

e Self study: examples 7-9, 7-10



/0 PROGRAMMING

e Bit-addressable I/O Programming

— Example: write a program to monitor bit P1.5. If it is high, send 55H to PO;
otherwise send AAH to P2

#include <reg51.h>
sbit mybit = P175; //notice the way single bit is declared
void main(veoid)

{

mybit=1; //make mybit an input
while (1)
{
if (mybit==1)
P0=0x55;
else
P2=0xAA;




1/0 PROGRAMMING: SFR REGISTERS
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« Access SFR register
— Use sfr or sbit
— Example: read PO, send the result to P1; read in the value of P2.6

sfr regA = 0xEOQ;
sfr PO = 0x80; &)

sfr P1 = 0x90;
sbit inbit = 0xA6; // bit address for P26 @
bit mybit; /I compiler will automatically allocate memory to mybit

void main(void)
{
unsigned int z;
PO = 0xff; //input mode
inbit = 1; //input mode
for (z = 0; z<50000; z++)

{

regA = PO;

Pl =regA;

mybit = inbit; //read P26 to mybit
b
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노트
P2 Bit 단위 주소
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LOGIC
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* logic operators in C&
— && (and), || (or), ! (not)
— Example: if (varl <3 && var2 == 1)
if (!(var > 5))
 Bit-wise logic operators &
— Bit-by-bit logical operations: & (and), | (or), * (xor), ~ (not)
— Shifting: << (shift to left) >> (shift to right): NOT cyclic shift!
— Example
#include <reg51.h>
void main(void)
{
P0=0x35 & 0x0F;
P1=0x04 | 0x68;
P2=0x04 "~ 0x78;
P3=~0x55;
PO = 0x35 << 3;
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노트
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LOGIC: DATA SERIALIZATION
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Data serialization
— 1. using serial port (Ch. 10)
— 2. using shifting operators

— Example: write a C program to bring in a byte of data serially one bit at a time
via P1.0. LSB should come first

#include <reg51.h>
sbit P1b0 = P170;
sbin ACCMSB = ACC"7,
void main(void)
{
unsigned char x;
for (x=0; x<8; x++)
{
ACCMSB =P1B0;
ACC=ACC>>1;



OUTLINE
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 Data conversion programs
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DATA-CONVERSION: PACKED BCD TO-ASGCH

 Packed BCD to ASCII
— Recall: packed BCD = unpacked BCD - ASCII

— Example: Write a C program to convert packed BCD 0x29 to ASCII, send the
result to P1 and P2

#include <reg51.h>
void main(void)
{
unsigned char x, y, z;
unsigned char packedBCD = 0x29;
x = packedBCD & 0xOF; // extract low nibble

P1=x|0x30; // unpacked BCD-> ASCII
x = packedBCD & 0xFO; //extract high nibble

y = x>>4; // shift it to low nibble

P2 =y | 0x30; //unpacked BCD - ASCII
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DATA-CONVERSION:-ASGHTO BCD
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« ASCII to packed BCD
— ASCII = unpacked BCD = packed BCD
— Example: Write C program to convert “47” to packed BCD
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DATA CONVERSION: BINARY TO ASCII
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« Binary (or decimal) to ASCII
— iteratively divided by 10 and keep the remainder
— Example: convert OxFD = 1111 1101 = 253D to ASCII: ‘2°, °5°, ‘3’
#include <reg51.h>
void main(void)
{
unsigned char quotient, remainder, binbyte;
binbyte = 0xFD; //0xFD=253
quotient = binbyte/10; // quotient = 25
remainder = binbyte % 10; // remainder = 3
PO = remainder | 0x30; & /PO =3’

binbyte = quotient; // binbyte = 25;
quotient = binbyte/10; // quotient = 2
remainder = binbyte%10;  // remainder =5
P1 = remainder | 0x30; /[Pl ="°5

P2 = quotient | 0x30; /[Pl =°2’
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e Accessing code ROM space



RAM AND ROM
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 1In 8051, data can be stored in
— RAM (e.g. MOV)
— ROM (e.g. MOVC)
— External ROM (e.g. MOVX)

« RAM

— Compiler will automatically allocate RAM space for declared variables
(demo)

« RO—R7: bank 0 (00H — 07H)
» Variables (including array): address 08 and beyond

 stack: address right after variables.
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RAM AND ROM

* Accessing ROM in C
— To require the compiler store data in ROM, use the “code” keyword
» Without code keyword, all the data will be stored in RAM

— The compiler will automatically allocate ROM space for the variables.

— Example

#include <reg51.h>

void main(void)

{
code unsigned char mynum[] = “ABCDEF”’;
unsigned char z;
for (z = 0; z<=6; z++)

Pl = mynum]z];
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