Microprocessor
Ch.7 Programming In C

OUTLINE

Data types and time delay

I/0 programming and Logic operations

Data conversion programs

Accessing code ROM space

DATA TYPE: C V.S. ASSEMBLY

« C V.S. Assembly language
— Advantage of C
 It’s easier to program in C compared to assembly.

» C code can be easily ported to other microcontroller, while assembly
language can usually be used for 1 type of microcontroller

» There are lots of function libraries written in C

— Advantage of assembly language
* The hex file generated by assembly is usually smaller
» Code efficiency is higher (faster)

 C programming

— C has become the standard for embedded system programming
* Object oriented language (C++, Java, C#) are usually not as efficient as C
» C s flexible

— One of the main concerns in C programming for embedded system is to
generate a hex file that is small in size

* We need to pay attention to the size of variables during programming

DATA TYPE

* Data types
— unsigned char, signed char, unsigned int, signed int, sbit, bit and sfr

« unsigned char

— 8-bit. Most popular data type, matches most registers. Represent ASCII code or integers
in the range of 0 ~ 255.

— Example: write a C program to send the ASCII code of 0, 1, 2, A, B, C to port 1 (demo)
#include <reg51.h> // the definition of registers
void main (void)

{
unsigned char mynum[] = “012ABC”;

unsigned char z;
for (z=0; z <=5, z++)
P1 =mynum][z]; //port1 is denoted as P1
}

— Example: write a C program to toggle all bits of P2 continuously

#include <reg51.h>
void main(void)

{
for(;;) // infinite loop
{
P1 =0x55; // hex number: 0x55
P1 =0xAA;
}

DATA TYPE

e signed char
— an 8-bit number with the most significant bit representing sign (+ or -)
» Range: -128 ~ 127 (range of unsigned char: 0 ~ 255)
— Example: write a C program to send -3 to 3 to port 1

#include <reg51.h>
void main(void)

{
char mynum[] = {-3,-2,-1,0,1,2,3}; // signed char

unsigned char z;
for (z = 0; z<=6; z++)
P1 = mynum][z];

e unsigned int
— 16-bit (needs to registers), range: 0 ~ 65535 (FFFFH)
— E.g.: unsigned int a;
» signed int
— 16-bit, MSB represents sign. Range: -32768 ~ 32767
— E.g.:inta;
— Since int requires twice as many memory space as char, use unsigned or

signed int only when the number cannot be represented with unsigned or
signed char.

VLSI
강조

DATA TYPE

* sbhit
— Single bit, used to access single-bit addressable registers
— Example: write a C program to toggle bit DO of P1 50,000 times

#include <reg51.h>
sbit MYBIT = P10;
void main(void)

{

unsigned int z;; 50000 times, cannot use char
for (z=0; z<=50000;z++)

{
MYBIT = 0;
MYBIT = 1;

* bit
— Used to access single bit of bit-addressable RAM (20H — 2FH)

— Example: bit mybit = 0; // the compiler will assign a RAM space to a
//automatically

o sfr

— Used to access special function registers
— example: sfr ACC = 0xEQ; // the address of reg. A

VLSI
강조

VLSI
강조

DATA TYPE: TIME DELAY

Time delay

Two methods to achieve time delay:
* Timer (Ch. 9)
 Loop

When using loops in C, it’s difficult to determine the exact time delay by means of
calculation

* For the same C code, different compilers usually will generate different assembly
codes

* Thus the same C codes with different compilers might generate different delays
» The only way to know the exact delay is through oscilloscope.

#include <reg51.h>
void main(void)
{
unsigned int x;
while(1)
{
P1 =0x55;
for (x=0;x<40000;x++); //delay
P1=0xAA;
for (x=0;x<40000;x++); //delay

VLSI
강조

OUTLINE

* 1/O programming and Logic operations

/0 PROGRAMMING

* Byte size 1/0

— Example: write a program to get a byte of data from PO. If it’s less than 100,
send it to P1; otherwise send it to P2

#include <regS5l.h>
void main (veid)

{

unsigned char mybyte;

| PO=0xFF; //make PO an input port
while (1)
{

mybyte=R0; //get a byte from PO

if (mybyte<100)
Pl=mybyte; //send it to P1 if less than 100

else
P2=mybyte; //send it to P2 if more than 100

e Self study: examples 7-9, 7-10

/0 PROGRAMMING

e Bit-addressable I/O Programming

— Example: write a program to monitor bit P1.5. If it is high, send 55H to PO;
otherwise send AAH to P2

#include <reg51.h>
sbit mybit = P175; //notice the way single bit is declared
void main(veoid)

{

mybit=1; //make mybit an input
while (1)
{
if (mybit==1)
P0=0x55;
else
P2=0xAA;

1/0 PROGRAMMING: SFR REGISTERS

11

« Access SFR register
— Use sfr or sbit
— Example: read PO, send the result to P1; read in the value of P2.6

sfr regA = 0xEOQ;
sfr PO = 0x80; &)

sfr P1 = 0x90;
sbit inbit = 0xA6; // bit address for P26 @
bit mybit; /I compiler will automatically allocate memory to mybit

void main(void)
{
unsigned int z;
PO = 0xff; //input mode
inbit = 1; //input mode
for (z = 0; z<50000; z++)

{

regA = PO;

Pl =regA;

mybit = inbit; //read P26 to mybit
b

VLSI
노트
P2 Bit 단위 주소

VLSI
노트
Direct address mode for SFR

LOGIC

12

* logic operators in C&
— && (and), || (or), ! (not)
— Example: if (varl <3 && var2 == 1)
if (!(var > 5))
 Bit-wise logic operators &
— Bit-by-bit logical operations: & (and), | (or), * (xor), ~ (not)
— Shifting: << (shift to left) >> (shift to right): NOT cyclic shift!
— Example
#include <reg51.h>
void main(void)
{
P0=0x35 & 0x0F;
P1=0x04 | 0x68;
P2=0x04 "~ 0x78;
P3=~0x55;
PO = 0x35 << 3;

VLSI
노트
Bitwise in Multiple bits

Jaehee yoo
스티커 노트
True false variable 단위

LOGIC: DATA SERIALIZATION

13

Data serialization
— 1. using serial port (Ch. 10)
— 2. using shifting operators

— Example: write a C program to bring in a byte of data serially one bit at a time
via P1.0. LSB should come first

#include <reg51.h>
sbit P1b0 = P170;
sbin ACCMSB = ACC"7,
void main(void)
{
unsigned char x;
for (x=0; x<8; x++)
{
ACCMSB =P1B0;
ACC=ACC>>1;

OUTLINE

14

 Data conversion programs

15
DATA-CONVERSION: PACKED BCD TO-ASGCH

 Packed BCD to ASCII
— Recall: packed BCD = unpacked BCD - ASCII

— Example: Write a C program to convert packed BCD 0x29 to ASCII, send the
result to P1 and P2

#include <reg51.h>
void main(void)
{
unsigned char x, y, z;
unsigned char packedBCD = 0x29;
x = packedBCD & 0xOF; // extract low nibble

P1=x|0x30; // unpacked BCD-> ASCII
x = packedBCD & 0xFO; //extract high nibble

y = x>>4; // shift it to low nibble

P2 =y | 0x30; //unpacked BCD - ASCII

VLSI
줄 긋기

DATA-CONVERSION:-ASGHTO BCD

16

« ASCII to packed BCD
— ASCII = unpacked BCD = packed BCD
— Example: Write C program to convert “47” to packed BCD

VLSI
줄 긋기

DATA CONVERSION: BINARY TO ASCII

17

« Binary (or decimal) to ASCII
— iteratively divided by 10 and keep the remainder
— Example: convert OxFD = 1111 1101 = 253D to ASCII: ‘2°, °5°, ‘3’
#include <reg51.h>
void main(void)
{
unsigned char quotient, remainder, binbyte;
binbyte = 0xFD; //0xFD=253
quotient = binbyte/10; // quotient = 25
remainder = binbyte % 10; // remainder = 3
PO = remainder | 0x30; & /PO =3’

binbyte = quotient; // binbyte = 25;
quotient = binbyte/10; // quotient = 2
remainder = binbyte%10; // remainder =5
P1 = remainder | 0x30; /[Pl ="°5

P2 = quotient | 0x30; /[Pl =°2’

VLSI
강조

VLSI
강조

VLSI
강조

VLSI
노트
To output as ASCII

OUTLINE

18

e Accessing code ROM space

RAM AND ROM

19

 1In 8051, data can be stored in
— RAM (e.g. MOV)
— ROM (e.g. MOVC)
— External ROM (e.g. MOVX)

« RAM

— Compiler will automatically allocate RAM space for declared variables
(demo)

« RO—R7: bank 0 (00H — 07H)
» Variables (including array): address 08 and beyond

 stack: address right after variables.

20

RAM AND ROM

* Accessing ROM in C
— To require the compiler store data in ROM, use the “code” keyword
» Without code keyword, all the data will be stored in RAM

— The compiler will automatically allocate ROM space for the variables.

— Example

#include <reg51.h>

void main(void)

{
code unsigned char mynum[] = “ABCDEF”’;
unsigned char z;
for (z = 0; z<=6; z++)

Pl = mynum]z];

Jaehee yoo
밑줄

Jaehee yoo
밑줄

