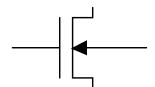
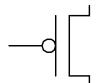
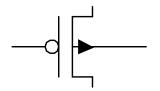
Introduction to CMOS VLSI
Design

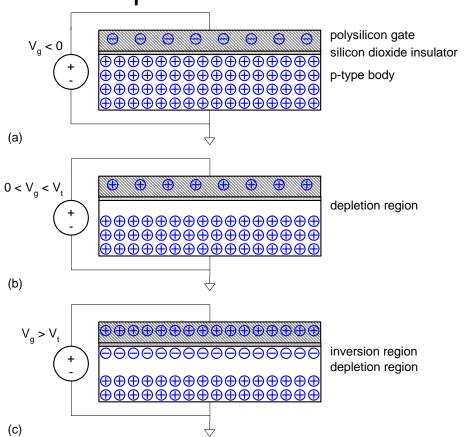
Lecture 3: CMOS Transistor Theory


Outline


- Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- ☐ Gate and Diffusion Capacitance
- Pass Transistors
- ☐ RC Delay Models


Introduction

- ☐ So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- ☐ Transistor gate, source, drain all have capacitance
 - $-I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- ☐ Also explore what a "degraded level" really means



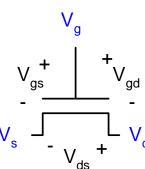
MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

3: CMOS Transistor Theory

CMOS VLSI Design

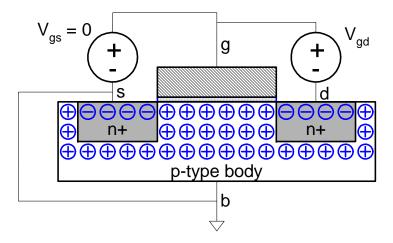
Slide 4


Terminal Voltages

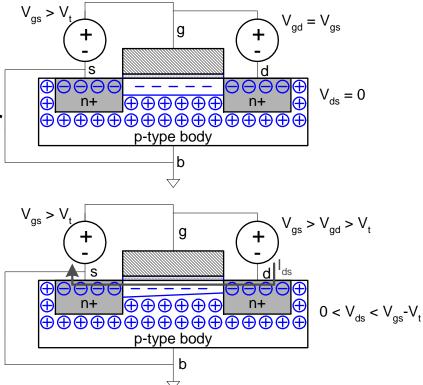
Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

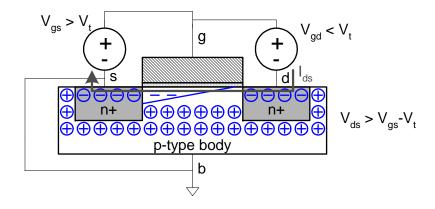
$$-V_{ad} = V_a - V_d$$


$$-V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- ☐ Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- □ nMOS body is grounded. First assume source is 0 too.
- ☐ Three regions of operation
 - Cutoff
 - Linear
 - Saturation

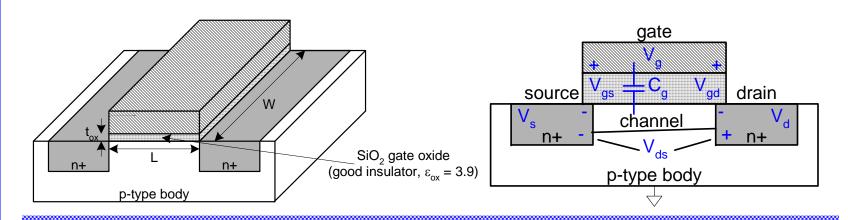

nMOS Cutoff

- No channel
- $\Box \ \, I_{ds}=0$


nMOS Linear

- □ Channel forms
- Current flows from d to s
 - e⁻ from s to d
- \Box I_{ds} increases with V_{ds}
- ☐ Similar to linear resistor

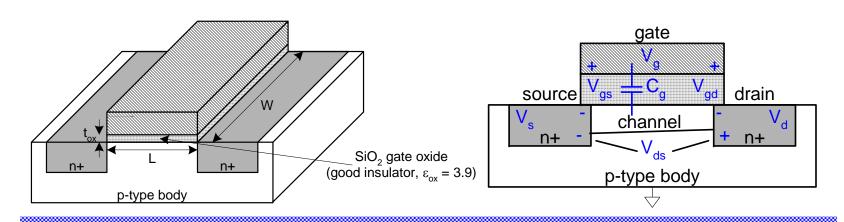
nMOS Saturation


- ☐ Channel pinches off
- □ I_{ds} independent of V_{ds}
- We say current saturates
- ☐ Similar to current source

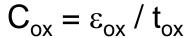
I-V Characteristics

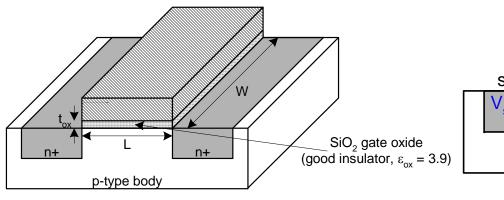
- ☐ In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

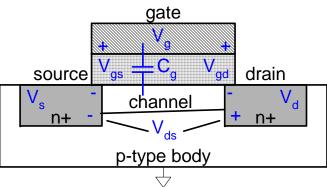
- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- \Box $Q_{channel} =$



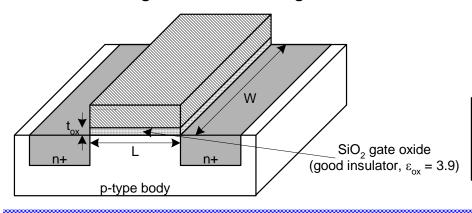
3: CMOS Transistor Theory

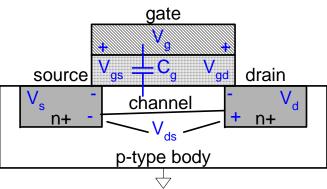

CMOS VLSI Design


Slide 10


- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- \Box $Q_{channel} = CV$
- □ C =

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- \square $Q_{channel} = CV$
- \Box $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$





- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- \square $Q_{channel} = CV$
- \Box $C = C_q = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$

$$\Box$$
 $V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t$

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

- ☐ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- **∪** *∨* =

- ☐ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box v = \mu E$ μ called mobility
- □ E =

- ☐ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\mathbf{D} \quad \mathbf{v} = \mu \mathbf{E}$ μ called mobility
- \Box E = V_{ds}/L
- ☐ Time for carrier to cross channel:

$$-t=$$

- ☐ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\mathbf{D} \quad \mathbf{v} = \mu \mathbf{E}$ μ called mobility
- \Box E = V_{ds}/L
- ☐ Time for carrier to cross channel:

$$-t=L/v$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} =$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$\beta = \mu C_{\text{ox}} \frac{W}{L}$$

nMOS Saturation I-V

- \Box If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} V_{t}$
- Now drain voltage no longer increases current

$$I_{ds} =$$

nMOS Saturation I-V

- \Box If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} V_{t}$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

nMOS Saturation I-V

- \Box If $V_{ad} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} V_{t}$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

nMOS I-V Summary

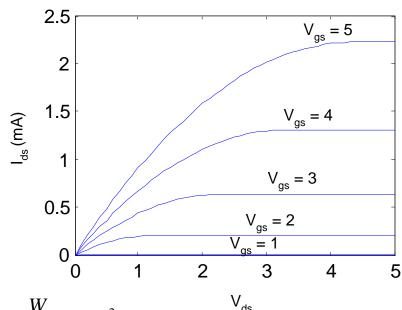
☐ Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Example

- We will be using a 0.6 μm process for your project
 - From AMI Semiconductor

$$- t_{ox} = 100 \text{ Å}$$


$$- \mu = 350 \text{ cm}^2/\text{V*s}$$

$$- V_t = 0.7 V$$

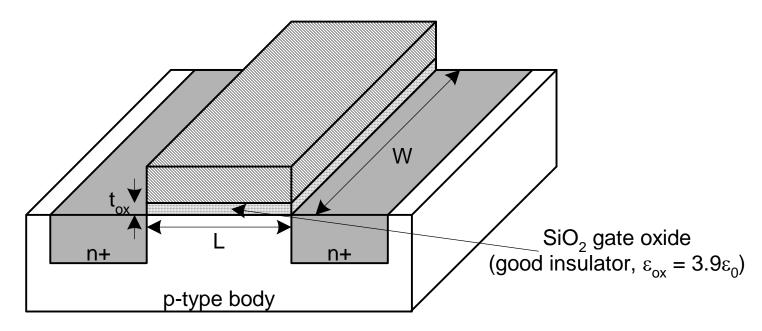
☐ Plot I_{ds} vs. V_{ds}

$$-V_{as} = 0, 1, 2, 3, 4, 5$$

- Use W/L =
$$4/2 \lambda$$

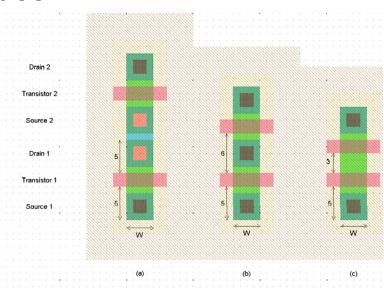
$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^{2}$$

pMOS I-V

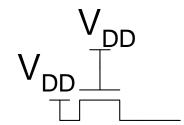

- □ All dopings and voltages are inverted for pMOS
- lue Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm²/V*s in AMI 0.6 μ m process
- ☐ Thus pMOS must be wider to provide same current
 - In this class, assume μ_n / μ_p = 2
 - *** plot I-V here

Capacitance

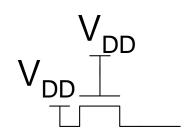
- Any two conductors separated by an insulator have capacitance
- ☐ Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- □ Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion


Gate Capacitance

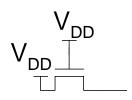
- □ Approximate channel as connected to source
- \Box $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- C_{permicron} is typically about 2 fF/μm

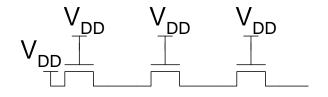

Diffusion Capacitance

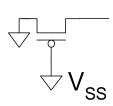
- \Box C_{sb} , C_{db}
- Undesirable, called parasitic capacitance
- ☐ Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - ½ C_a for uncontacted
 - Varies with process


Pass Transistors

- We have assumed source is grounded
- ☐ What if source > 0?
 - e.g. pass transistor passing V_{DD}


Pass Transistors


- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing $V_{\rm DD}$



- \Box $V_g = V_{DD}$
 - If $V_s > V_{DD}-V_t$, $V_{gs} < V_t$
 - Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}

Pass Transistor Ckts

$$V_{DD}$$
 V_{DD}

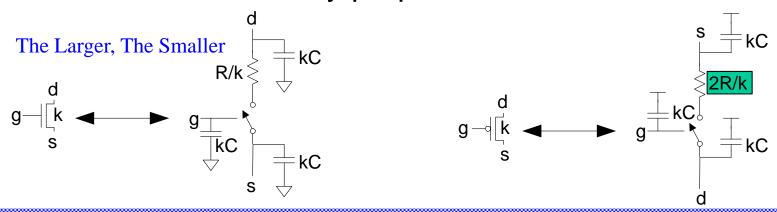
Pass Transistor Ckts

$$V_{DD} = V_{DD}$$

$$V_{S} = V_{DD} - V_{tn}$$

$$V_{s} = |V_{tp}|$$

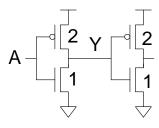
$$V_{SS}$$

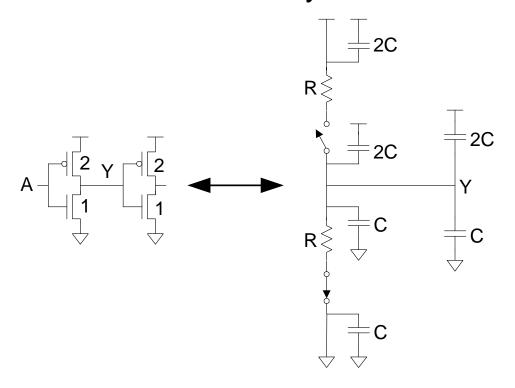

$$V_{DD} \downarrow V_{DD} - V_{tn}$$
 $V_{DD} \downarrow V_{DD} - 2V_{tr}$

Effective Resistance

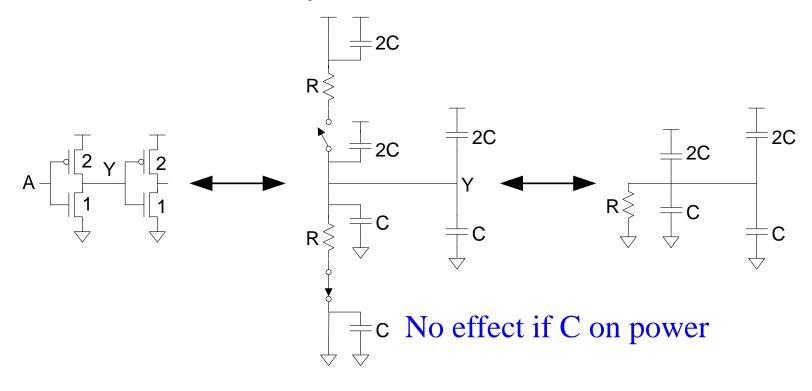
- ☐ Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- ☐ Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- ☐ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

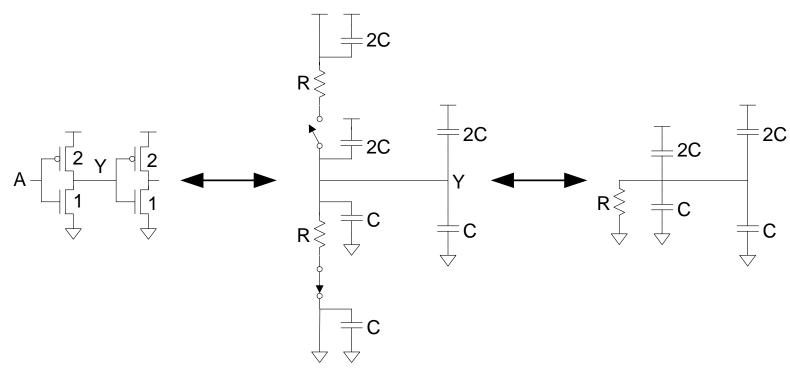
RC Delay Model


- □ Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- ☐ Capacitance proportional to width
- Resistance inversely proportional to width


RC Values

- Capacitance
 - $-C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width
 - Values similar across many processes
- Resistance
 - R ≈ 6 KΩ* μ m in 0.6um process (Sheet R을 사용할 것)
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent


☐ Estimate the delay of a fanout-of-1 inverter


☐ Estimate the delay of a fanout-of-1 inverter

☐ Estimate the delay of a fanout-of-1 inverter

☐ Estimate the delay of a fanout-of-1 inverter

d = 6RC