
Combinational logicCombinational logic
(디지털논리회로복습)(디지털논리회로복습)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Possible logic functions of two variables

f f There are 16 possible functions of 2 input variables:
 in general, there are 2**(2**n) functions of n inputs

X
Y F

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 X Y Y t X 10
X and Y

X Y

X or Y

not Y not X 1
X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Cost of different logic functions

ff f Different functions are easier or harder to implement
 each has a cost associated with the number of switches needed
 0 (F0) and 1 (F15): require 0 switches directly connect output to 0 (F0) and 1 (F15): require 0 switches, directly connect output to

low/high
 X (F3) and Y (F5): require 0 switches, output is one of inputs
 X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
 X nor Y (F4) and X nand Y (F14): require 4 switches
 X or Y (F7) and X and Y (F1): require 6 switches X or Y (F7) and X and Y (F1): require 6 switches
 X = Y (F9) and X  Y (F6): require 16 switches

 thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Minimal set of functions

C i l t ll l i f ti f NOT NOR d NAND? Can we implement all logic functions from NOT, NOR, and NAND?
 For example, implementing X and Y

is the same as implementing not (X nand Y)
I f t d it ith l NOR l NAND

X Y X nand Y
0 0 1

X Y X nor Y
0 0 1

 In fact, we can do it with only NOR or only NAND
 NOT is just a NAND or a NOR with both inputs tied together

0 0 1
1 1 0

0 0 1
1 1 0

 and NAND and NOR are "duals"

X nand Y  not ((not X) nor (not Y))
X nor Y not ((not X) nand (not Y))

 and NAND and NOR are duals ,
that is, its easy to implement one using the other

X nor Y  not ((not X) nand (not Y))

 But lets not move too fast . . .
 lets look at the mathematical foundation of logic

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

An algebraic structure

f An algebraic structure consists of
 a set of elements B
 binary operations { + • } binary operations { + , • }
 and a unary operation { ’ }
 such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B2. closure: a b is in B a b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = ay
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

Boolean algebra

 Boolean algebra
 B = {0, 1}
 variables variables
 + is logical OR, • is logical AND
 ’ is logical NOT

 All algebraic axioms hold

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 6

Logic functions and Boolean algebra

f Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the
operators: ’, +, and •

X Y X • Y
0 0 0
0 1 0

X Y X’ X’ • Y
0 0 1 0
0 1 1 1

operators: , , and

1 0 0
1 1 1

1 0 0 0
1 1 0 0

X Y X’ Y’ X • Y X’ • Y’ (X • Y) + (X’ • Y’)
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0 (X • Y) + (X’ • Y’)  X = Y1 0 0 1 0 0 0
1 1 0 0 1 0 1

Boolean expression that is
true when the variables X

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

X, Y are Boolean algebra variables

true when the variables X
and Y have the same value
and false, otherwise

Axioms and theorems of Boolean algebra

id i identity
1. X + 0 = X 1D. X • 1 = X

 null
2. X + 1 = 1 2D. X • 0 = 0

 idempotency:
3 X + X = X 3D X • X = X3. X + X = X 3D. X • X = X

 involution:
4. (X’)’ = X

 complementarity:
5. X + X’ = 1 5D. X • X’ = 0

 commutativity: commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

 associativity:
7 (X Y) Z X (Y Z) 7D (X Y) Z X (Y Z)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Axioms and theorems of Boolean algebra (cont’d)

di ib i i distributivity:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

 uniting:g
9. X • Y + X • Y’ = X 9D. (X + Y) • (X + Y’) = X

 absorption:
10 X + X • Y = X 10D X • (X + Y) = X10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

 factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z =

X • Z + X’ • Y (X + Z) • (X’ + Y)
 concensus:co ce sus

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
X • Y + X’ • Z (X + Y) • (X’ + Z)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Axioms and theorems of Boolean algebra (cont’d)

 de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

 generalized de Morgan’s: generalized de Morgan s:
15. f’(X1,X2,...,Xn,0,1,+,•) = f(X1’,X2’,...,Xn’,1,0,•,+)

 establishes relationship between • and +

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Axioms and theorems of Boolean algebra (cont’d)

D lit Duality
 a dual of a Boolean expression is derived by replacing

• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 any theorem that can be proven is thus also proven for its dual!
 a meta-theorem (a theorem about theorems)

 duality: duality:
16. X + Y + ...  X • Y • ...

 generalized duality:
17 f (X X X 0 1) f(X X X 1 0)17. f (X1,X2,...,Xn,0,1,+,•)  f(X1,X2,...,Xn,1,0,•,+)

 Different than deMorgan’s Law Different than deMorgan s Law
 this is a statement about theorems
 this is not a way to manipulate (re-write) expressions

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Proving theorems (rewriting)

f Using the axioms of Boolean algebra:
 e.g., prove the theorem: X • Y + X • Y’ = X

distributivity (8) X • Y + X • Y’ = X • (Y + Y’)
complementarity (5) X • (Y + Y’) = X • (1)
identity (1D) X • (1) = X 

th th X X Y X e.g., prove the theorem: X + X • Y = X

identity (1D) X + X • Y = X • 1 + X • Y
distributivity (8) X • 1 + X • Y = X • (1 + Y)distributivity (8) X • 1 + X • Y = X • (1 + Y)
identity (2) X • (1 + Y) = X • (1)
identity (1D) X • (1) = X 

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Activity

f f Prove the following using the laws of Boolean algebra:
 (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z)

identity (X • Y) + (1) • (Y • Z) + (X’ • Z)

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z)

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)distributivity (X Y) + (X Y Z) + (X Y Z) + (X Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

f t i (X Y) (1 + Z) + (X’ Z) (1 + Y)factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

identity (X • Y) + (X’ • Z) 

Proving theorems (perfect induction)

f () Using perfect induction (complete truth table):
 e.g., de Morgan’s:

(X + Y)’ = X’ • Y’
NOR is equivalent to AND

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0

1
0

1
0NOR is equivalent to AND

with inputs complemented 1 0 0 1
1 1 0 0

X Y X’ Y’ (X Y)’ X’ + Y’

0
0

0
0

(X • Y)’ = X’ + Y’
NAND is equivalent to OR
with inputs complemented

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

1
1
1
0

1
1
1
01 1 0 0 0 0

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

A simple example: 1-bit binary adder

C

CinCout

 Inputs: A, B, Carry-in
 Outputs: Sum, Carry-out

A A A A A
B B B B B

S S S S S

A

S S S S S

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1

0
1

0
0

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

1
0
1
0
0

0
1
0
1
1 Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

1 1 0
1 1 1

0
1

1
1

Cout A B Cin + A B Cin + A B Cin + A B Cin

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Apply the theorems to simplify expressions

f f The theorems of Boolean algebra can simplify Boolean
expressions
 e g full adder’s carry-out function (same rules apply to any function) e.g., full adder s carry out function (same rules apply to any function)

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
= A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
= (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
= (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
= B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
= B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin

B Ci A (1) Ci A B Ci ’ A B Ci= B Cin + A (1) Cin + A B Cin’ + A B Cin
= B Cin + A Cin + A B (Cin’ + Cin)
= B Cin + A Cin + A B (1)

B Cin + A Cin + A B adding extra terms

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

= B Cin + A Cin + A B adding extra terms
creates new factoring

opportunities

Activity

f Fill in the truth-table for a circuit that checks that a 4-bit
number is divisible by 2, 3, or 5

X8 X4 X2 X1 By2 By3 By5X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 00 0 1 1 0 1 0

 Write down Boolean expressions for By2, By3, and By5

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Activity

X8 X4 X2 X1 By2 By3 By5X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 00 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 1 1 0
0 1 1 1 0 0 0 By2 = X8’X4’X2’X1’ + X8’X4’X2X1’0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 1
1 0 1 1 0 0 0

By2 X8 X4 X2 X1 + X8 X4 X2X1
+ X8’X4X2’X1’ + X8’X4X2X1’
+ X8X4’X2’X1’ + X8X4’X2X1’
+ X8X4X2’X1’ + X8X4X2X1’1 0 1 1 0 0 0

1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 1

= X1’

By3 = X8’X4’X2’X1’ + X8’X4’X2X1
+ X8’X4X2X1’ + X8X4’X2’X1
+ X8X4X2’X1’ + X8X4X2X1

B 5 X8’X4’X2’X1’ X8’X4X2’X1

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

By5 = X8’X4’X2’X1’ + X8’X4X2’X1
+ X8X4’X2X1’ + X8X4X2X1

From Boolean expressions to logic gates

X Y
XO

X Y Z
0 0 0

0 1
1 0

X Y NOT X’ X ~X

0 0 0
0 1 0
1 0 0
1 1 1

X
Y Z AND X • Y XY X  Y

X Y Z
0 0 0
0 1 1
1 0 1

X
Y

Z OR X + Y X  Y
1 0 1
1 1 1

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

From Boolean expressions to logic gates (cont’d)

X
X Y Z
0 0 1NAND X

Y
Z

0 0 1
0 1 1
1 0 1
1 1 0

 NAND

X Y Z
0 0 1
0 1 0
1 0 0

Z
X

Y

 NOR
1 0 0
1 1 0

Y

X Y Z XOR X
Y

Z

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

 XOR
X Y

X Y Z
0 0 1
0 1 0

0

Z
X
Y

X xnor Y = X Y + X’ Y’
X and Y are the same

 XNOR
X = Y

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

0 1 0
1 0 0
1 1 1

ZY X and Y are the same
("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

 More than one way to map expressions to gates

T1
T2

 e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

T1

use of 3-input gate

AA

B T1

Z A

B Z

C
D T2 C

D

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Waveform view of logic functions

 Just a sideways truth table
 but note how edges don’t line up exactly
 it takes time for a gate to switch its output!

time
 it takes time for a gate to switch its output!

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

change in Y takes time to "propagate" through gates

Choosing different realizations of a function

A B C ZA B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

two-level realization
(we don’t count NOT gates)

multi-level realization
(gates with fewer inputs)

XOR gate (easier to draw

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

XOR gate (easier to draw
but costlier to build)

Which realization is best?

f Reduce number of inputs
 literal: input variable (complemented or not)

 can approximate cost of logic gate as 2 transitors per literal can approximate cost of logic gate as 2 transitors per literal
 why not count inverters?

 fewer literals means less transistors
 smaller circuits

 fewer inputs implies faster gates
 gates are smaller and thus also faster gates are smaller and thus also faster

 fan-ins (# of gate inputs) are limited in some technologies
 Reduce number of gates

 fewer gates (and the packages they come in) means smaller circuits
 directly influences manufacturing costs

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Which is the best realization? (cont’d)

f f Reduce number of levels of gates
 fewer level of gates implies reduced signal propagation delays
 minimum delay configuration typically requires more gates minimum delay configuration typically requires more gates

 wider, less deep circuits

 How do we explore tradeoffs between increased circuit delay
and size?
 automated tools to generate different solutions

l i i i i ti d b f t d l it logic minimization: reduce number of gates and complexity
 logic optimization: reduction while trading off against delay

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Are all realizations equivalent?

 Under the same input stimuli, the three alternative
implementations have
almost the same waveform behavioralmost the same waveform behavior
 delays are different
 glitches (hazards) may arise – these could be bad, it depends
 variations due to differences in number of gate levels and structure

 The three implementations are functionally equivalent

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Implementing Boolean functions

 Technology independent
 canonical forms
 two-level forms two-level forms
 multi-level forms

 Technology choices
 packages of a few gates

l l i regular logic
 two-level programmable logic
 multi-level programmable logic multi level programmable logic

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

Canonical forms

f f Truth table is the unique signature of a Boolean function
 The same truth table can have many gate realizations

Canonical forms Canonical forms
 standard forms for a Boolean expression
 provides a unique algebraic signature provides a unique algebraic signature

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Sum-of-products canonical forms

f Also known as disjunctive normal form
 Also known as minterm expansion

F =

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABCA’B’C

A B C F F’
0 0 0 0 1

F = + ABC + AB C + ABC + ABCAB C

0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 01 0 1 1 0
1 1 0 1 0
1 1 1 1 0 F’ = A’B’C’ + A’BC’ + AB’C’

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Sum-of-products canonical form (cont’d)

() Product term (or minterm)
 ANDed product of literals – input combination for which output is true
 each variable appears exactly once true or inverted (but not both)

A B C minterms
0 0 0 A’B’C’ 0 F in canonical form:

 each variable appears exactly once, true or inverted (but not both)

0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3

F in canonical form:
F(A, B, C) = m(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A’B’C + A’BC + AB’C + ABC’ + ABC0 1 1 ABC m3

1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6

canonical form  minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

(A’B’ A’B AB’ AB)C ABC’

h h d f

1 1 1 ABC m7 = (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

short-hand notation for
minterms of 3 variables

= ABC + C
= AB + C

Product-of-sums canonical form (SKIP)

f Also known as conjunctive normal form
 Also known as maxterm expansion

F = 000 010 100
F = (A + B + C) (A + B’ + C) (A’ + B + C)

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 10 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 01 1 0 1 0
1 1 1 1 0

F’ (A B C’) (A B’ C’) (A’ B C’) (A’ B’ C) (A’ B’ C’)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form (cont’d)

S () Sum term (or maxterm)
 ORed sum of literals – input combination for which output is false
 each variable appears exactly once true or inverted (but not both)

A B C maxterms
0 0 0 A+B+C M0

F in canonical form:
F(A B C) M(0 2 4)

 each variable appears exactly once, true or inverted (but not both)

0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3

F(A, B, C) = M(0,2,4)
= M0 • M2 • M4
= (A + B + C) (A + B’ + C) (A’ + B + C)

1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6

canonical form  minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
1 1 1 A’+B’+C’ M7

short-hand notation for

() ()
(A + B + C) (A’ + B + C)

= (A + C) (B + C)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

maxterms of 3 variables

S-o-P, P-o-S, and de Morgan’s theorem

S f d Sum-of-products
 F’ = A’B’C’ + A’BC’ + AB’C’

 Apply de Morgan’sApply de Morgan s
 (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
 F = (A + B + C) (A + B’ + C) (A’ + B + C)

 Product-of-sums
 F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

 Apply de Morgan’s
 (F’)’ = ((A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’))’ (F) ((A B C)(A B C)(A B C)(A B C)(A B C))
 F = A’B’C + A’BC + AB’C + ABC’ + ABC

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Four alternative two-level implementations
of F = AB + C

canonical sum-of-productsB

A

i i i d f d

F1

C

minimized sum-of-products

F2

canonical product-of-sums

F3

minimized product-of-sums

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

F4

Waveforms for the four alternatives

f Waveforms are essentially identical
 except for timing hazards (glitches)
 delays almost identical (modeled as a delay per level not type of delays almost identical (modeled as a delay per level, not type of

gate or number of inputs to gate)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Mapping between canonical forms (SKIP)

 Minterm to maxterm conversion
 use maxterms whose indices do not appear in minterm expansion
 e g F(A B C) = m(1 3 5 6 7) = M(0 2 4) e.g., F(A,B,C) = m(1,3,5,6,7) = M(0,2,4)

 Maxterm to minterm conversion
 use minterms whose indices do not appear in maxterm expansionpp p
 e.g., F(A,B,C) = M(0,2,4) = m(1,3,5,6,7)

 Minterm expansion of F to minterm expansion of F’
 use minterms whose indices do not appear
 e.g., F(A,B,C) = m(1,3,5,6,7) F’(A,B,C) = m(0,2,4)
Maxterm expansion of F to maxterm expansion of F’ Maxterm expansion of F to maxterm expansion of F
 use maxterms whose indices do not appear
 e.g., F(A,B,C) = M(0,2,4) F’(A,B,C) = M(1,3,5,6,7)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

 e.g., F(A,B,C) M(0,2,4) F (A,B,C) M(1,3,5,6,7)

Incompleteley specified functions

 Example: binary coded decimal increment by 1
 BCD digits encode the decimal digits 0 – 9

in the bit patterns 0000 – 1001
A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1

off-set of W

in the bit patterns 0000 1001

0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1 don’t care (DC) set of W

on-set of W

0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X

don t care (DC) set of W

1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X

these inputs patterns should
never be encountered in practice
– "don’t care" about associated
output values can be exploited

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

1 1 1 0 X X X X
1 1 1 1 X X X X

output values, can be exploited
in minimization

Notation for incompletely specified functions

f Don’t cares and canonical forms
 so far, only represented on-set
 also represent don’t-care-set also represent don t-care-set
 need two of the three sets (on-set, off-set, dc-set)

 Canonical representations of the BCD increment by 1 function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15 Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 Z =  [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

 Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
 Z =  [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Simplification of two-level combinational logic

Fi di i i l f d d f li i Finding a minimal sum of products or product of sums realization
 exploit don’t care information in the process

 Algebraic simplificationAlgebraic simplification
 not an algorithmic/systematic procedure
 how do you know when the minimum realization has been found?
C t id d d i t l Computer-aided design tools
 precise solutions require very long computation times, especially for

functions with many inputs (> 10)
 heuristic methods employed – "educated guesses" to reduce amount of

computation and yield good if not best solutions
 Hand methods still relevanta d et ods st e e a t

 to understand automatic tools and their strengths and weaknesses
 ability to check results (on small examples)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

The uniting theorem

f () Key tool to simplification: A (B’ + B) = A
 Essence of simplification of two-level logic

 find two element subsets of the ON set where only one variable find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements

A B F

F = A’B’+AB’ = (A’+A)B’ = B’

A B F

0 0 1

0 1 0

B has the same value in both on-set rows
– B remains

1 0 1

1 1 0
A has a different value in the two rows
– A is eliminated

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

– A is eliminated

Boolean cubes

f f Visual technique for indentifying when the uniting theorem
can be applied

 n input variables = n-dimensional "cube"

0 1

 n input variables = n-dimensional cube

1101

1-cube
X

0 1
2-cube

X

Y

00 10

111 1111
0111

3-cube

X

Y Z

000

101
4-cube

W
Y

Z

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

X000 W
X0000

1000

Mapping truth tables onto Boolean cubes

f f Uniting theorem combines two "faces" of a cube
into a larger "face"

 Example:

A B F
two faces of size 0 (nodes)
combine into a face of size 1(line)

 Example:

1101

F

0 0 1

0 1 0

1 0 1

B

00

01

10

1 1 0

A varies within face B does not

A

ON-set = solid nodes
OFF-set = empty nodes

A varies within face, B does not
this face represents the literal B'

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

OFF set = empty nodes
DC-set = 'd nodes

Three variable example

f

A B Cin Cout

(A'+A)BCin

AB(Cin'+Cin)

 Binary full-adder carry-out logic

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0

AB(Cin +Cin)
111

0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1 A(B+B')CinA

B C

000

101

1 1 0 1
1 1 1 1 the on-set is completely covered by

the combination (OR) of the subcubes
f l di i lit t th t “111”

C t BCi +AB+ACi

of lower dimensionality - note that “111”
is covered three times

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Cout = BCin+AB+ACin

Higher dimensional cubes

S f

F(A B C) = m(4 5 6 7)

 Sub-cubes of higher dimension than 2

F(A,B,C) = m(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2111011

represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchangedB C 101
001

010
110

A is asserted (true) and unchanged
B and C vary

This subcube represents the
lit l A

A

C

000

101

100

literal A

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

m-dimensional cubes in a n-dimensional
Boolean space

() In a 3-cube (three variables):
 a 0-cube, i.e., a single node, yields a term in 3 literals
 a 1-cube i e a line of two nodes yields a term in 2 literals a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

 In general,
 an m-subcube within an n-cube (m < n) yields a term

ith lit lwith n – m literals

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

Karnaugh maps

f Flat map of Boolean cube
 wrap–around at edges
 hard to draw and visualize for more than 4 dimensions hard to draw and visualize for more than 4 dimensions
 virtually impossible for more than 6 dimensions

 Alternative to truth-tables to help visualize adjacenciesp j
 guide to applying the uniting theorem
 on-set elements with only one variable changing value are

dj t lik th it ti i li t th t bl
A B F

0 0 1

adjacent unlike the situation in a linear truth-table

0 1
A

B 0 0 1

0 1 0

1 0 1
0 2

1 3

0

1

1

0 0

1

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

1 1 0
1 3

Karnaugh maps (cont’d)

G Numbering scheme based on Gray–code
 e.g., 00, 01, 11, 10
 only a single bit changes in code for adjacent map cells only a single bit changes in code for adjacent map cells

00 01
AB

C 11 10
A

0 2

1 3

00 01C
0

1
6 4

7 5

0

C
0 4 12 8

A

1 3 7 5

B

A

1 5 13 9 D

3 7 15 11

0 2

1 3

6 4

7 5
C

2 6 14 10
C

B 13 = 1101= ABC’D

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

B

Adjacencies in Karnaugh maps

f f Wrap from first to last column
 Wrap top row to bottom row

000 010 110 100

A
111

010

011
110

001 011 111 101C

B
A

B C

000

101

100

001

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 48

Karnaugh map examples

 F =

 Cout =
1 1

0 0B

A

B’
 Cout =

 f(A,B,C) = m(0,4,5,7)

0 0B

() ()

0 0 1 0

A
AB+ ACin + BCin

0 1 1 1Cin

B

1 0 0 1

A

obtain the
complement
of the function
b i 0

1 0

0 0

0 1

1 1C

B AC + B’C’ + AB’

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 49

by covering 0s
with subcubes

B AC + B C + AB

More Karnaugh map examples

A

G(A,B,C) =
0 0

0 0

1 1

1 1C
A

B

A

F(A,B,C) = m(0,4,5,7)
1 0

0 0

0 1

1 1C

B

= AC + B’C’

F' simply replace 1's with 0's and vice versa

B

0 1 1 0

A

F'(A,B,C) =  m(1,2,3,6)
F simply replace 1 s with 0 s and vice versa0 1

1 1

1 0

0 0C

B

= BC’ + A’C

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 50

Karnaugh map: 4-variable example

(C) ()

C + B’D’

 F(A,B,C,D) = m(0,2,3,5,6,7,8,10,11,14,15)

F = + A’BDF

A 1111
0111

1 0 0 1

D
C

D

1 0

0 1

0 1

0 0

1 1 1 1

B

A
B

D

0000
1000

1 1

1 1

1 1

1 1
C

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

B

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 51

(fewer terms with fewer inputs per term)

Karnaugh maps: don’t cares

f(C) () ()

+ B’C’D

 f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)
 without don't cares

 f = A’D + B C D f AD

0 0 X 0

A

1 1 X 1
D

1 1 0 0
C

0 X 0 0

B

C

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 52

Karnaugh maps: don’t cares (cont’d)

f(C) () () f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)
 f = A'D + B'C'D without don't cares
 f = with don't caresA'D + C'D f = with don t cares

A

A D + C D

0 0

1 1

X 0

X 1

A
by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover

don't cares can be treated as

1 1 X 1
D

1 1 0 0

0 0
C

rather than a 1 cube to cover
this node

1s or 0s
depending on which is more

advantageous

0 X 0 0

B

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 53

Activity

Mi i i h f i F (0 2 7 8 14 15) d(3 6 9 12 13) Minimize the function F = m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

A 1 0 X 1

A

1 0

0 0

X 1

X X

A

F = AC’ +
A’C +
BC +

1 0

0 0

X 1

X X
D

X 1

1 X

1 0

1 0

D

C

BC +
AB +
A’B’D’ +
B’C’D’

X 1

1 X

1 0

1 0

B

C

1 X 1 0

B

B C D B

1 0 X 1

A

F BC + A’B’D’ + B’C’D’ 0 0 X X

X 1 1 0

D

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 54

1 X 1 0

B

Combinational logic summary

 Logic functions, truth tables, and switches Logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Axioms and theorems of Boolean algebra
 proofs by re-writing and perfect induction proofs by re writing and perfect induction

 Gate logic
 networks of Boolean functions and their time behavior

 Canonical forms Canonical forms
 two-level and incompletely specified functions

 Simplification
 a start at understanding two level simplification a start at understanding two-level simplification

 Later
 automation of simplification
 multi level logic multi-level logic
 time behavior
 hardware description languages
 design case studies

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 55

 design case studies

