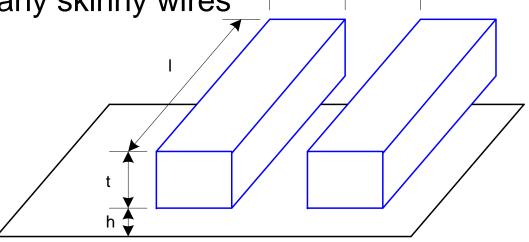
Introduction to CMOS VLSI Design

Lecture 6: Wires

Outline

- Introduction
- Wire Resistance
- □ Wire Capacitance
- Wire RC Delay
- ☐ Crosstalk
- Wire Engineering
- Repeaters


Introduction

- ☐ Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- □ Alternating layers run orthogonally

Wire Geometry

- \Box Pitch = w + s
- \square Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2

Pack in many skinny wires

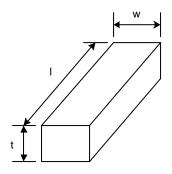
Layer Stack

- AMI 0.6 μm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- □ Example:

 Intel 180 nm process

 Layer T (nm) W (nm) S (nm) AR

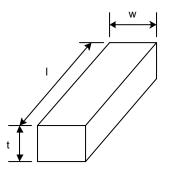
 6 1720 860 860 2.0
- \square M1: thin, narrow (< 3 λ)
 - High density cells
- ☐ M2-M4: thicker
 - For longer wires
- M5-M6: thickest
 - For V_{DD}, GND, clk
- 1720 860 860 2.0 1000 2.0 5 1600 800 800 1000 2.0 1080 540 540 700 2.2 700 320 320 700 700 320 320 2.2 700 480 1.9 250 250 800


Substrate

 $\mathbf{\Lambda}^{\mathsf{T}}\mathbf{\Lambda}$

Wire Resistance

 \Box ρ = resistivity (Ω *m)


$$R =$$

Wire Resistance

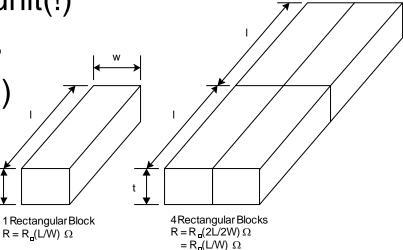
$$\Box$$
 $\rho = resistivity (\Omega^* m)$

$$R = \frac{\rho}{t} \frac{l}{w}$$

Wire Resistance

 \Box $\rho = resistivity (\Omega^* m)$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$


 \square R_{\square} = sheet resistance (Ω/\square)

Identical Resistance

− □ is a dimensionless unit(!)

☐ Count number of squares

$$-R = R_{\square} * (# of squares)$$

Choice of Metals

- ☐ Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

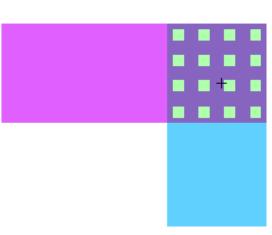
Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

☐ Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/□)		
Diffusion (silicided)	3-10		
Diffusion (no silicide)	50-200		
Polysilicon (silicided)	3-10		
Polysilicon (no silicide)	50-400		
Metal1	0.08		
Metal2	0.05		
Metal3	0.05		
Metal4	0.03		
Metal5	0.02		
Metal6	0.02		

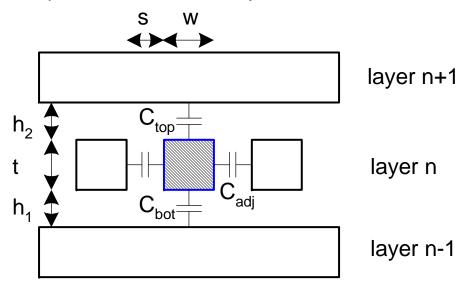
6: Wires


CMOS VLSI Design

Slide 10

Contacts Resistance

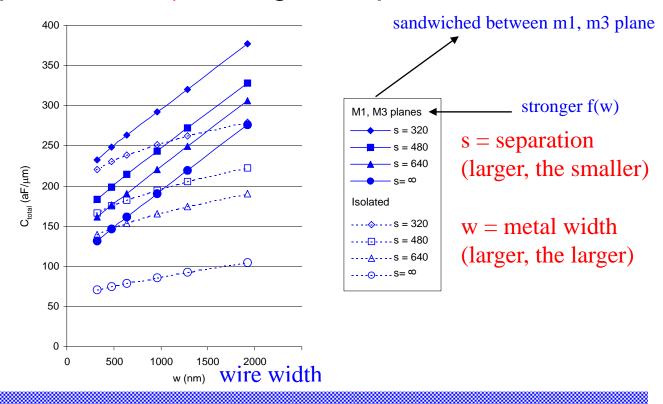
- \Box Contacts and vias also have 2-20 Ω
- ☐ Use many contacts for lower R
 - Many small contacts for current crowding around periphery



6: Wires

Wire Capacitance (R&C@1)

- ☐ Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $\Box C_{total} = C_{top} + C_{bot} + 2C_{adj}$

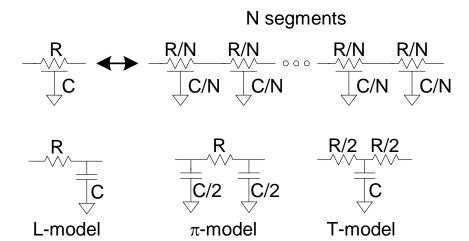


Capacitance Trends

- \Box Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- □ Dielectric constant
 - $\varepsilon = k\varepsilon_0$
- \Box $\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- \square k = 3.9 for SiO₂
- ☐ Processes are starting to use low-k dielectrics
 - $k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

- □ Typical wires have ~ 0.2 fF/μm
 - Compare to 2 fF/μm for gate capacitance



Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- ☐ Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

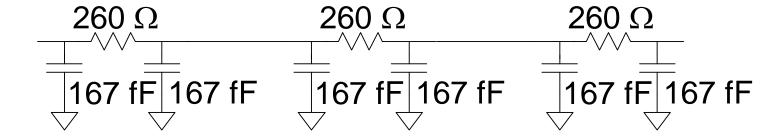
Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

- \square 3-segment π -model is accurate to 3% in simulation
- ☐ L-model needs 100 segments for same accuracy!
- \Box Use single segment π -model for Elmore delay

Example

- ☐ Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- \Box Construct a 3-segment π -model
 - R_□ =
 - $-C_{permicron} =$

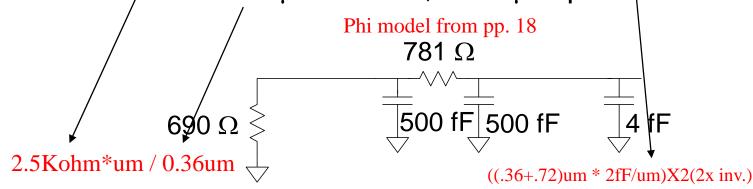

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - $-0.32 \mu m$ wide
- \Box Construct a 3-segment π-model $_{5\text{mm/0.32um*sheet R}}$

$$-R_{\square} = 0.05 \Omega/\square$$

$$=> R = 781 \Omega$$

$$-C_{permicron} = 0.2 \text{ fF/}\mu\text{m}$$
 *5mm => $C = 1 \text{ pF}$

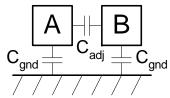

Wire RC Delay

- ☐ Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $-R = 2.5 k\Omega^* \mu m$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

$$-t_{pd} =$$

Wire RC Delay

- ☐ Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $-R = 2.5 k\Omega^* \mu m$ for gates (10X gate)
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

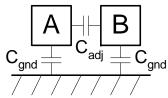

$$-t_{pd} = 1.1 \text{ ns}$$
 Elmore delay: $690*500+(690+781)*(500+4)$

Crosstalk

- □ A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1,
 the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- ☐ Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- ☐ Effective C_{adi} depends on behavior of neighbors
 - Miller effect

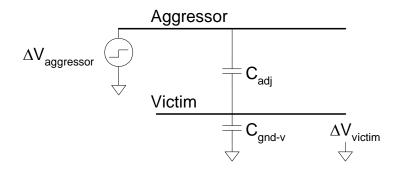

В	ΔV	C _{eff(A)}	MCF
Constant			
Switching with A			
Switching opposite A			

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 Small signal GND in case of Vdd

- Model as $C_{qnd} = C_{top} + C_{bot}$ (Because above & below @ const. V)
- Effective C_{adi} depends on behavior of neighbors
 - Miller effect

(remember 전자회로, think of effective terminal vtg.)



В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- ☐ If victim is floating:
 - model as capacitive voltage divider

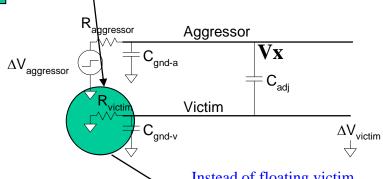
$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor} \frac{1/\text{Cg}}{1/\text{Cg+1/Ca}}$$

Driven Victims (w/o derivation)

- Usually victim is driven by a (logic) gate that fights noise
 - Noise depends on relative resistances Aggressor dominates & victim in intermediate range
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

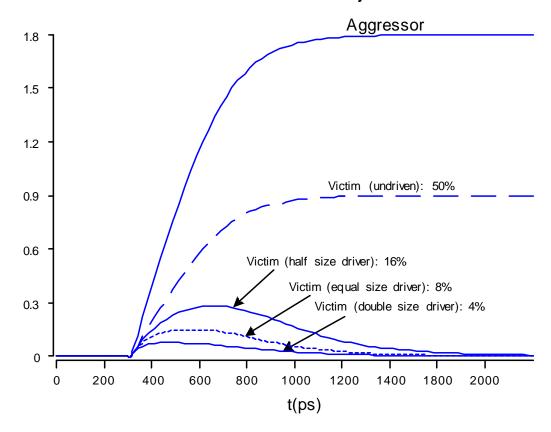
If C is equal, 1/2*(1 + Ra/Rv)


Smaller the victim gate (larger Rv),

Vvictim factor (as in the previous slide)

Vx to

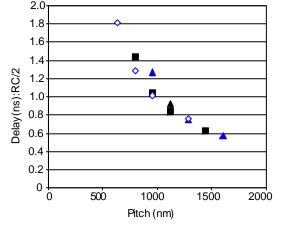
Larger the damage
$$au_{e}$$
 au_{e} au_{e

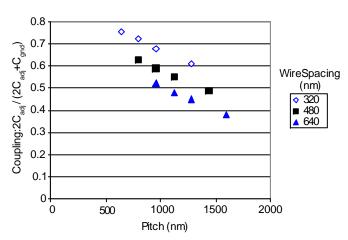

→ Vaggressor to Vx factor (Detailed derivation, refer to ref. paper)

Instead of floating victim, gate driven victim (noise reduced)

Coupling Waveforms

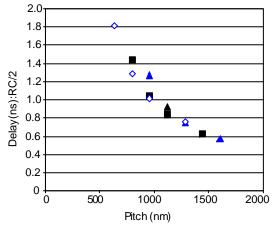
 \Box Simulated coupling for $C_{adj} = C_{victim}$

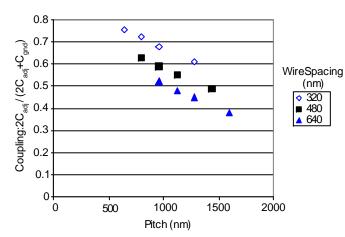


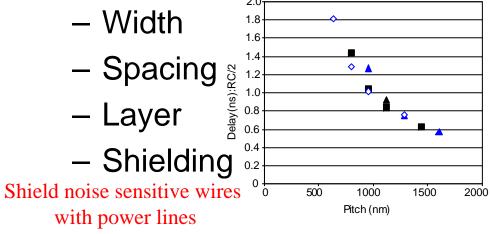

Noise Implications

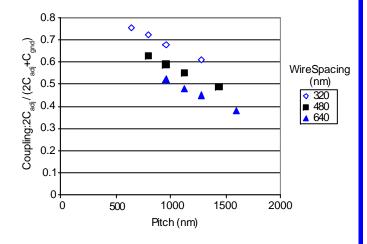
- □ So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- ☐ Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- □ Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

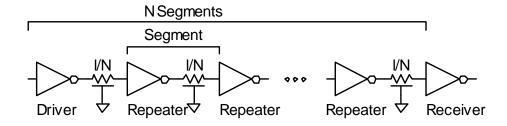

- ☐ Goal: achieve delay, area, power goals with acceptable noise
- ☐ Degrees of freedom:
 - Width
 - Spacing Speak Spacing




Larger the width, smaller the delay, Larger the spacing, smaller the coupling


- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing SolvesLayer

- ☐ Goal: achieve delay, area, power goals with acceptable noise
- ☐ Degrees of freedom:


 $vdd a_0 a_1 gnd a_2 a_3 vdd$

Repeaters

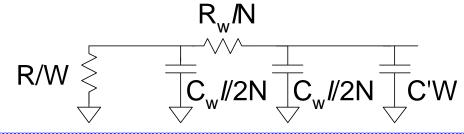
- ☐ R and C are proportional to I
- \square RC delay is proportional to P
 - Unacceptably great for long wires

Repeaters

- □ R and C are proportional to I
- RC delay is proportional to
 - Unacceptably great for long wires
- ☐ Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- ☐ How many repeaters should we use?
- How large should each one be?
- ☐ Equivalent Circuit
 - Wire length I/N (total length I divided by N sections
 - Wire Capaitance C_w*//N, Resistance R_w*//N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W


Repeater Design

- ☐ How many repeaters should we use?
- ☐ How large should each one be?
- ☐ Equivalent Circuit
 - Wire length /

All quantity per unit length

- Wire Capacitance C_w*I, Resistance R_w*I
- Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

 $C' \rightarrow 3C(Cox) 2W PMOS 1W NMOS$

Repeater Results

(Derivation @next slide)

- Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_{w}C_{w}}$$

$$W = \sqrt{\frac{RC_{w}}{R_{w}C'}}$$

Best delay that can be minimized (optimized) per length

~60-80 ps/mm

in 180 nm process

Derivation

The Elmore delay of each segment is Slide 35의 Schematic 기준

$$t_{pd-seg} = \frac{R}{W} \left(\frac{C_w l}{N} + C'W \right) + \left(\frac{R_w l}{N} \right) \left(\frac{C_w l}{2N} + C'W \right)$$

The total delay is N times greater:

$$t_{pd} = NRC' + L\left(R_wC'W + \frac{RC_w}{W}\right) + L^2\frac{R_wC_w}{2N}$$

Take the partial derivatives with respect to N and W and set them to 0 to minimize delay:

$$\begin{split} \frac{\partial t_{pd}}{\partial N} &= RC' - l^2 \, \frac{R_w C_w}{2N^2} = 0 \Rightarrow N = l \sqrt{\frac{R_w C_w}{2RC'}} \\ \frac{\partial t_{pd}}{\partial W} &= l \left(R_w C' - \frac{RC_w}{W^2} \right) = 0 \Rightarrow W = \sqrt{\frac{RC_w}{R_w C'}} \end{split}$$

Using these gives a delay per unit length of

$$\frac{t_{pd}}{I} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_{w}C_{w}}$$