

Topic & Scope

- ✓ Content: The course gives ...
 - ... an overview of network processor cards (architectures and use)
 - > ... an introduction of how to program Intel IXP network processors
 - ... some ideas of how to use network processors in a multimedia system

Available Resources

- ✓ Book: Douglas E. Comer: "Network Systems Design using Network Processors", Pearson Prentice Hall, 2004
- Other resources will be placed at
 - http://www.ifi.uio.no/~paalh/INF5060
 - ➤ Login: *inf5060*
 - Password: ixp
- ✓ Manuals for IXP1200: .../~paalh/INF5060/IXP1200
- ✓ Code: .../~paalh/INF5060/code

Disclaimer

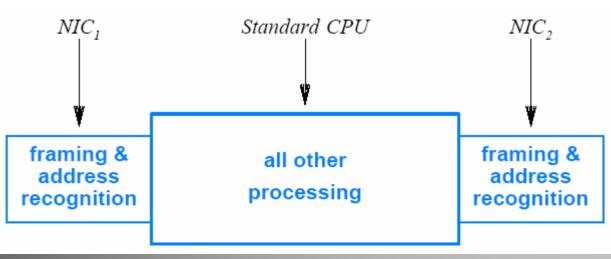
✓ In the field of network processors, I am a tyro

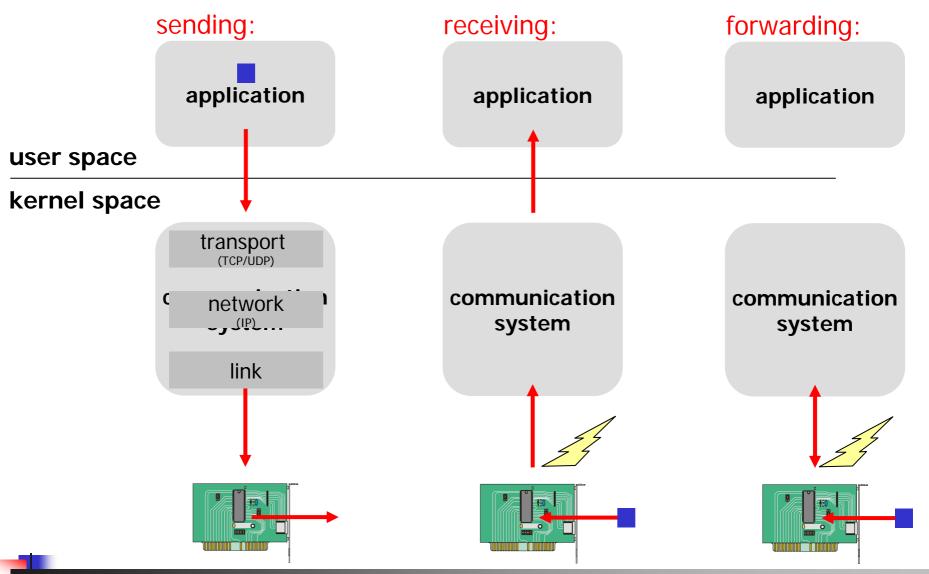
✓ Definition:

Tyro \(\forall Tyro\), n.; pl. Tyros. A beginner in learning; one \(\forall T\) who is in the rudiments of any branch of study; a person imperfectly acquainted with a subject; a novice

✓ Then, by definition, in the field of network processors, we are all tyros.

✓ In our defense, when it comes to network processors, everyone is a tyro

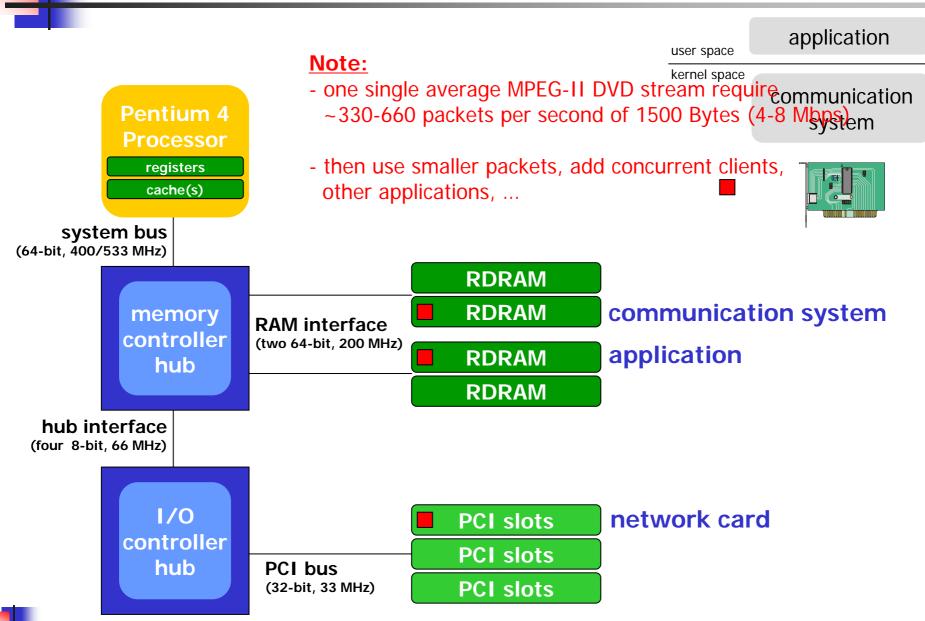



4

Software-Based Network System

- ✓ Uses conventional, shared hardware (e.g., a PC)
- ✓ Software
 - > runs the entire system
 - allocates memory
 - controls I/O devices
 - performs all protocol processing
- First generation network systems:

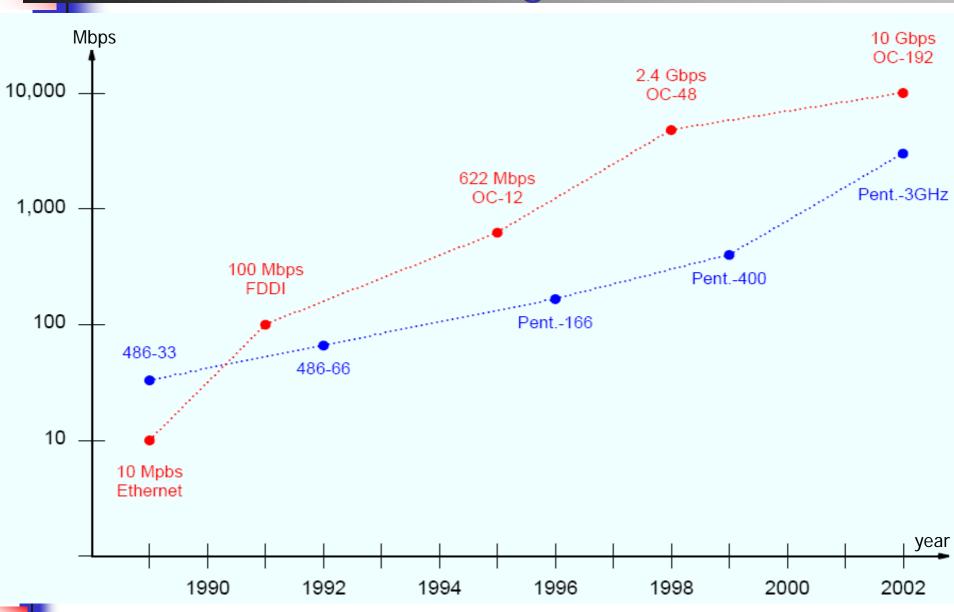
Review of General Data Path on Conventional Computer Hardware Architectures


Review of Conventio

Conventional Computer Hardware Architectures

Intel D850MD Motherboard - Intel Hub Architecture (850 Chipset):

Forwarding Example for an Intermediate Node: Intel Hub Architecture


Main Packet Processing Costs

- Copying: used when moving a packet from one memory location to another
 - expensive (proportional to packet size)
 - should be avoided whenever possible (use pointers)
- Checksuming: used to detect errors
 - expensive (proportional to packet size)
 - transport layer: payload + header
 - network layer: header
- ✓ Fragmentation/reassembly: needed when packet is larger than smallest MTU
 - generate headers + header checksum
 - receiving many small data fragments

Question:

- Which is growing faster?
 - network bandwidth
 - processing power
- ✓ Note: if network bandwidth is growing faster
 - CPU may be the bottleneck
 - need special-purpose hardware
 - conventional hardware will become irrelevant
- ✓ Note: if processing power is growing faster
 - no problems with processing
 - network/busses will be bottlenecks

Growth Of Technologies

Packet Rates and Software Processing

Packet rates (packets per second):

	64 B	1500 B
10BASE-T (10 Mbps)	19.531	833
1000BASE-T (1 Gbps)	1.953.125	83.333
OC-192 (9.95 Gbps)	19.439.453	829.416

- Packet processing (MIPS, assuming 5K instructions per packet):
 - the Comer book uses 10K instructions as an upper bound per packet
 - it varies according to which protocols are used, implementation, data size, etc.
 - more if moved through a fire wall

oris per packet).	64 B	1500 B
10BASE-T (10 Mbps)	97,65	4,17
1000BASE-T (1 Gbps)	9.765,63	416,67
OC-192 (9.95 Gbps)	97.197,27	4.147,08

- engineering rule: 1GHz general purpose CPU = 1Gbps network data rate
- Note; this is only processing time must be added to handle interrupts and move data into memory
- ✓ Thus, software running on a general-purpose processor is insufficient to handle high-speed networks because the aggregate packet rate exceeds the __capabilities of the CPU

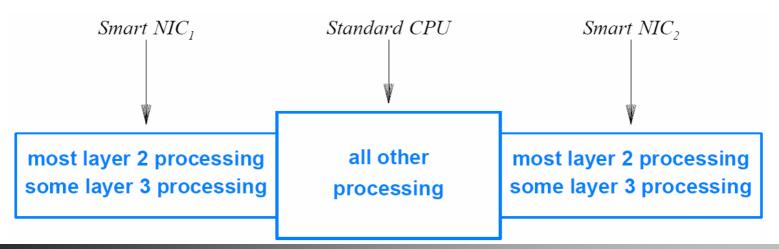
The Network System Challenges

- Data rates in general keep increasing
- ✓ Network rate > CPU rate > memory, busses and I/O interfaces
- Protocols and applications keep evolving
- System design, implementation and testing is time consuming and expensive
- Systems often contain errors
- ✓ Special-purpose hardware (ASIC) designed for one type of system can usually not be reused
- ✓ Host machine must inspect all incoming packets
- **√** ...
- Challenge: find ways to improve the design and manufacture of complex networking systems

Statement of Hope

- ✓ If there is hope, it lies in ...
 - > 1990: ... faster CPUs
 - > 1995: ... the application specific integrated circuit (ASIC) designers
 - > 2002: ... the programmers!

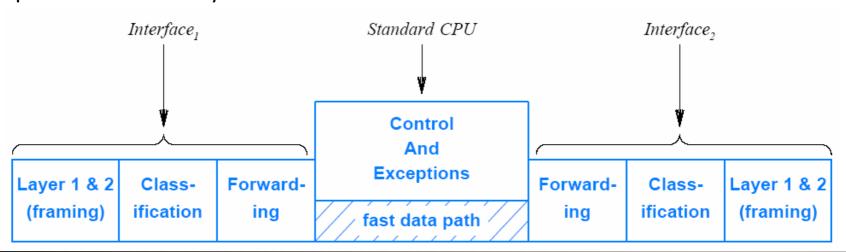
Programmability


- we need a programmable device with more capability than a conventional CPU
- key to low-cost hardware for next generation network systems
- compared to ASIC designs, it is more flexible, easier and faster to upgrade, and thus, less expensive

First Generation

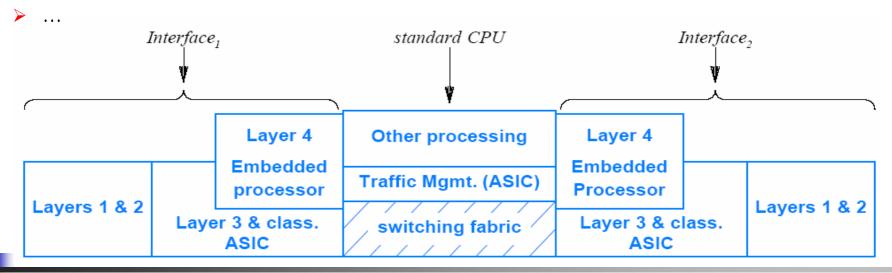
- General idea: To optimize computation, move operations that account for the most CPU time from software into hardware
- Add hardware to NIC
 - off-the-shelf chips for layer 2
 - ASICs for layer 3

- Onboard...
 - address recognition and filtering
 - onboard buffering
 - > DMA
 - buffer and operation chaining


- Allows each NIC to operate independently
 - effectively a multiprocessor
 - total processing power increased dramatically

Second Generation (early 1990s)

- Designed for greater scale
- Decentralized architecture
 - additional computational power on each NIC
 - NIC implements classification and forwarding
- High-speed internal interconnection mechanism
 - interconnects NICs
 - provides fast data path


- Multiple network interfaces
- High-speed hardware interconnects NICs
- General-purpose processor only handles exceptions
- ✓ Sufficient for medium speed interfaces (100 Mbps)

Third Generation (late 1990s)

- ✓ Functionality partitioned further
- Additional hardware on each NIC
- Onboard...
 - classification
 - forwarding
 - traffic policing
 - monitoring and statistics

- Almost all packet processing offloaded from CPU
 - Special-purpose ASICs handle lower layer functions
 - Embedded (RISC) processor handles layer 4
 - CPU only handles low-demand processing

Third Generation (late 1990s)

- Enough, are third generation sufficient??
 - Almost!!
 - But not quite! ;-(
- ✓ What's the problem?
 - high cost
 - long time to market
 - difficult to test
 - expensive and time-consuming to change
 - even trivial changes require silicon respin
 - 18-20 month development cycle
 - little reuse across products and versions
 - require in-house expertise (ASIC designers)

> ...

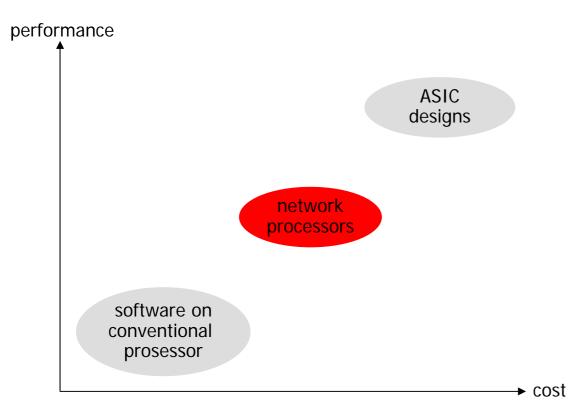
Network Processors: The Idea in a Nutshell

- Devise new hardware building blocks, but make them *programmable*
- ✓ Include support for protocol processing and I/O
 - General-purpose processor(s) for control tasks
 - Special-purpose processor(s) for packet processing and table lookup
- ✓ Include functional units for tasks such as checksum computation, hashing, ...
- ✓ Integrate as much as possible onto one chip
- ⇒ Call the result a *network processor*

Designing a Network Processor

Depends on

- operations network processor will perform
- role of network processor in overall system


✓ Goals

- generality: sufficient for all protocols, all protocol processing tasks and all possible networks
- high speed: scale to high bit rates and high packet rates

✓ Key point:

A network processor is not designed to process a specific protocol or part of a protocol. Instead, designers seek a minimal set of instructions that are sufficient to handle an arbitrary protocol processing task at high speed

Where to Place Network Processors

- ✓ Thus, network processors is somewhere in the middle
- Goal: increase performance and reduce costs

✓ Increase performance:

known issues:

- must partition packet processing into separate functions
- to achieve highest speed, must handle each function with separate hardware unknown issues:
- which functions to choose
- what hardware building blocks to use
- how to interconnect building blocks

✓ Decrease costs:

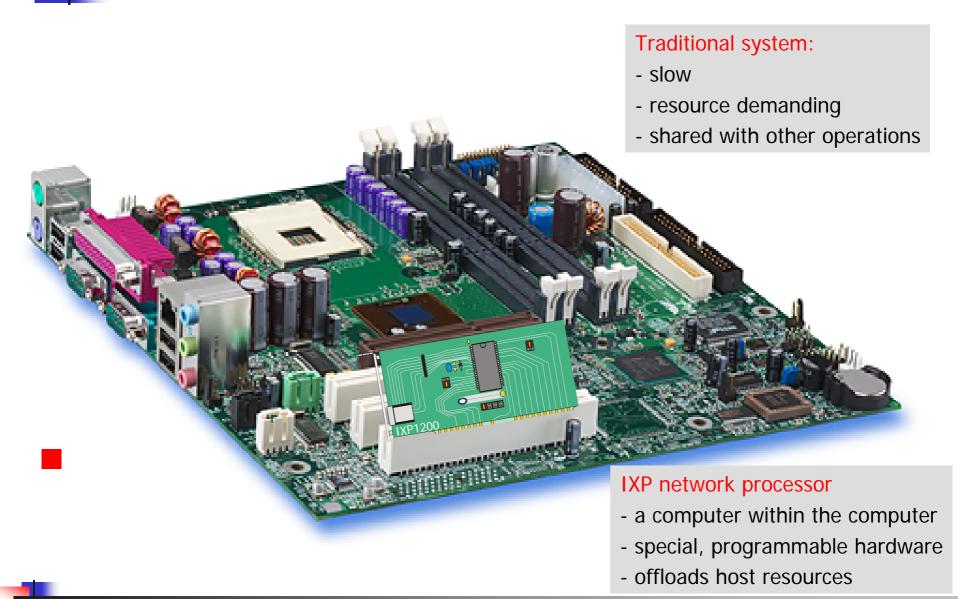
Economics driving a gold rush

- NPs will dramatically lower production costs for network systems
- good NP designs worth lots of \$\$

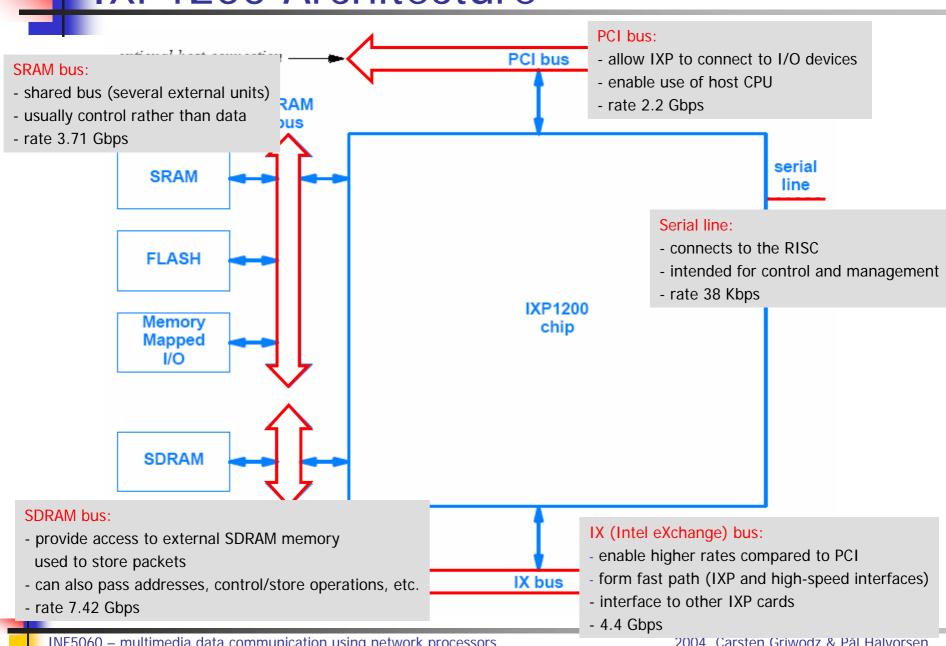
Explosion of Commercial Products

- √ 1990 → 2000: network processors transformed from interesting curiosity to mainstream product
 - used to reduce both overall costs and time to market
 - 2002: over 30 vendors with a vide range of architectures
 - e.g.,
 - Multi-Chip Pipeline (Agere)
 - Augmented RISC Processor (Alchemy)
 - Embedded Processor Plus Coprocessors (Applied Micro Circuit Corporation)
 - Pipeline of Homogeneous Processors (Cisco)
 - Pipeline of Heterogeneous Processors (EZchip)
 - Configurable Instruction Set Processors (Cognigine)
 - Extensive And Diverse Processors (IBM)
 - Flexible RISC Plus Coprocessors (Motorola)
 - Internet Exchange Processor (Intel)
 - ...

IXP1200: A Short Overview

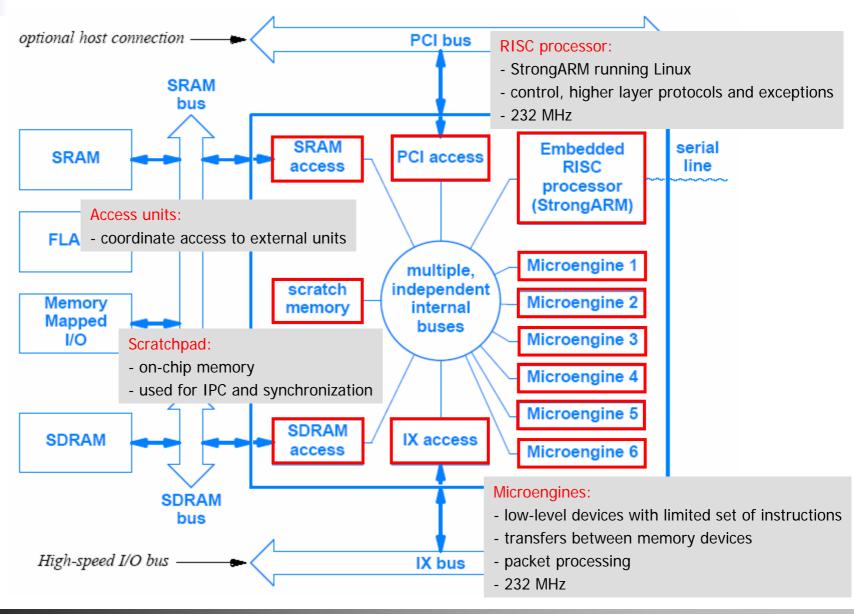

IXA: Internet Exchange Architecture

✓ IXA is a broad term to describe the Intel network architecture (HW & SW, control- & data plane)


- ✓ IXP: Internet Exchange Processor
 - processor that implements IXA
 - IXP1200 is the first IXP chip (4 versions)

- ✓ IXP1200 basic features
 - 1 embedded RISC processor
 - 6 packet processors (microengines)
 - multiple, independent busses
 - onboard memory (3 types)
 - low-speed serial interface
 - interfaces for external memory and I/O busses
 - **>** ...

Main Idea


IXP1200 Architecture

INF5060 – multimedia data communication using network processors

2004 Carsten Griwodz & Păl Halvorsen

IXP1200 Architecture

IXP1200 Processor Hierarchy

Processor Type	Onboard?	Programmable?

General-Purpose Processor:

- used for control and management
- running general applications

RISC processor:

- chip configuration interface (serial line)
- control, higher layer protocols and exceptions

I/O processors (microengines):

- transfers between memory devices
- packet processing

Coprocessors:

- real-time clock and timers
- IX bus controller
- hashing unit
- ..

Physical interface processors:

- implement layer 1 & 2 processing

IXP1200 Memory Hierarchy

Memory Type	Maximum Size	On Chip?	Typical Use
		•	
GP Registers	128 regs.	yes	Intermediate computation
Inst. Cache	16 Kbytes	yes	Recently used instructions
Data Cache	8 Kbytes	yes	Recently used data
Mini Cache	512 bytes	yes	Data that is reused once
Write buffer	unspecified	yes	Write operation buffer
Scratchpad	4 Kbytes	yes	IPC and synchronization
Inst. Store	64 Kbytes	yes	Microengine instructions
FlashROM	8 Mbytes	no	Bootstrap
SRAM	8 Mbytes	no	Tables or packet headers
SDRAM	256 Mbytes	no	Packet storage

IXP1200 Memory Hierarchy

Memory Type	Addressable Data Unit (bytes)	Relative Access Time	Special Features

Different **memory** types...

- ✓...are organized into different addressable data units (words or longwords)
- ✓...have different access times
- ✓...connected to different busses

Therefore, to achieve optimal performance, programmers must *understand the organization* and *allocate* items from the *appropriate type*

Summary

- The network challenges are many
- Challenge: find ways to improve the design and manufacture of complex networking systems
- ✓ Hope (2002 version)
 lies in the programmers and network processors
- ✓ We will use Intel IXP1200 as an example which offers...
 - ...embedded processor plus parallel packet processors
 - ...connections to external memories and buses
- Next time: how to start programming these monsters