
Hardware description language
From Wikipedia, the free encyclopedia

In electronics, a hardware description language or HDL is any language from a class of computer 
languages, specification languages, or modeling languages for formal description and design of 
electronic circuits, and most-commonly, digital logic. It can describe the circuit's operation, its design 
and organization, and tests to verify its operation by means of simulation.[citation needed]

HDLs are standard text-based expressions of the spatial and temporal structure and behaviour of 
electronic systems. Like concurrent programming languages, HDL syntax and semantics includes 
explicit notations for expressing concurrency. However, in contrast to most software programming 
languages, HDLs also include an explicit notion of time, which is a primary attribute of hardware. 
Languages whose only characteristic is to express circuit connectivity between a hierarchy of blocks 
are properly classified as netlist languages used on electric computer-aided design (CAD).

HDLs are used to write executable specifications of some piece of hardware. A simulation program, 
designed to implement the underlying semantics of the language statements, coupled with simulating 
the progress of time, provides the hardware designer with the ability to model a piece of hardware 
before it is created physically. It is this executability that gives HDLs the illusion of being 
programming languages, when they are more-precisely classed as specification languages or modeling 
languages. Simulators capable of supporting discrete-event (digital) and continuous-time (analog) 
modeling exist, and HDLs targeted for each are available.

It is certainly possible to represent hardware semantics using traditional programming languages such 
as C++, although to function such programs must be augmented with extensive and unwieldy class 
libraries. Primarily, however, software programming languages do not include any capability for 
explicitly expressing time, and this is why they do not function as a hardware description language. 
Before the recent introduction of SystemVerilog, C++ integration with a logic simulator was one of the 
few ways to use OOP in hardware verification. SystemVerilog is the first major HDL to offer object 
orientation and garbage collection.

Using the proper subset of virtually any (hardware description or software programming) language, a 
program called a synthesizer (or synthesis tool) can infer hardware logic operations from the language 
statements and produce an equivalent netlist of generic hardware primitives to implement the specified 
behaviour.[citation needed] Synthesizers generally ignore the expression of any timing constructs in the 
text. Digital logic synthesizers, for example, generally use clock edges as the way to time the circuit, 
ignoring any timing constructs. The ability to have a synthesizable subset of the language does not 
itself make a hardware description language.

Contents

■ 1 History
■ 2 Design using HDL
■ 3 Simulating and debugging HDL code
■ 4 Design Verification with HDLs
■ 5 HDL and programming languages
■ 6 Languages

■ 6.1 Analogue circuit design
■ 6.2 Digital circuit design
■ 6.3 Printed Circuit Board design

■ 7 See also

페이지 1 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조



■ 8 References
■ 9 External links

History

The first hardware description languages were ISP (Instruction Set Processor),[1] developed at Carnegie 
Mellon University, and KARL, developed at University of Kaiserslautern, both around 1977. ISP was, 
however, more like a software programming language used to describe relations between the inputs 
and the outputs of the design. Therefore, it could be used to simulate the design, but not to synthesize 
it. KARL included design calculus language features supporting VLSI chip floorplanning and 
structured hardware design, which was also the basis of KARL's interactive graphic sister language 
ABL, implemented in the early 1980s as the ABLED graphic VLSI design editor, by the 
telecommunication research center CSELT at Torino, Italy. In the mid 80's, a VLSI design framework 
was implemented around KARL and ABL by an international consortium funded by the commission of 
the European Union (chapter in [2]). In 1983 Data-I/O introduced ABEL. It was targeted for describing 
programmable logical devices and was basically used to design finite state machines.

The first modern HDL, Verilog, was introduced by Gateway Design Automation in 1985. Cadence 
Design Systems later acquired the rights to Verilog-XL, the HDL-simulator that would become the de-
facto standard (of Verilog simulators) for the next decade. In 1987, a request from the U.S. Department 
of Defense led to the development of VHDL (VHSIC Hardware Description Language, where VHSIC 
is Very High Speed Integrated Circuit). VHDL was based on the Ada programming language. Initially, 
Verilog and VHDL were used to document and simulate circuit-designs already captured and 
described in another form (such as a schematic file.) HDL-simulation enabled engineers to work at a 
higher level of abstraction than simulation at the schematic-level, and thus increased design capacity 
from hundreds of transistors to thousands[citation needed].

The introduction of logic-synthesis for HDLs pushed HDLs from the background into the foreground 
of digital-design. Synthesis tools compiled HDL-source files (written in a constrained format called 
RTL) into a manufacturable gate/transistor-level netlist description. Writing synthesizeable RTL files 
required practice and discipline on the part of the designer; compared to a traditional schematic-layout, 
synthesized-RTL netlists were almost always larger in area and slower in performance[citation needed]. A 
circuit design from a skilled engineer, using labor-intensive schematic-capture/hand-layout, would 
almost always outperform its logically-synthesized equivalent, but synthesis' productivity advantage 
soon displaced digital schematic-capture to exactly those areas that were problematic for RTL-
synthesis: extremely high-speed, low-power, or asynchronous circuitry. In short, logic synthesis 
propelled HDL technology into a central role for digital design.

Within a few years, both VHDL and Verilog emerged as the dominant HDLs in the electronics 
industry, while older and less-capable HDLs gradually disappeared from use. But VHDL and Verilog 
share many of the same limitations: neither HDL is suitable for analog/mixed-signal circuit simulation. 
Neither possesses language constructs to describe recursively-generated logic structures. Specialized 
HDLs (such as Confluence) were introduced with the explicit goal of fixing a specific Verilog/VHDL 
limitation, though none were ever intended to replace VHDL/Verilog.

Over the years, a lot of effort has gone into improving HDLs. The latest iteration of Verilog, formally 
known as IEEE 1800-2005 SystemVerilog, introduces many new features (classes, random variables, 
and properties/assertions) to address the growing need for better testbench randomization, design 
hierarchy, and reuse. A future revision of VHDL is also in development, and is expected to match 
SystemVerilog's improvements.

페이지 2 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



Design using HDL

Efficiency gains realized using HDL means a majority of modern digital circuit design revolves around 
it. Most designs begin as a set of requirements or a high-level architectural diagram. Control and 
decision structures are often prototyped in flowchart applications, or entered in a state-diagram editor. 
The process of writing the HDL description is highly dependent on the nature of the circuit and the 
designer's preference for coding style . The HDL is merely the 'capture language'—often beginning 
with a high-level algorithmic description such as a C++ mathematical model. Designers often use 
scripting languages (such as Perl) to automatically generate repetitive circuit structures in the HDL 
language. Special text editors offer features for automatic indentation, syntax-dependent coloration, 
and macro-based expansion of entity/architecture/signal declaration.

The HDL code then undergoes a code review, or auditing. In preparation for synthesis, the HDL 
description is subject to an array of automated checkers. The checkers report deviations from 
standardized code guidelines, identify potential ambiguous code constructs before they can cause 
misinterpretation, and check for common logical coding errors, such as dangling ports or shorted 
outputs. This process aids in resolving errors before the code is synthesized.

In industry parlance, HDL design generally ends at the synthesis stage. Once the synthesis tool has 
mapped the HDL description into a gate netlist, this netlist is passed off to the back-end stage. 
Depending on the physical technology (FPGA, ASIC gate array, ASIC standard cell), HDLs may or 
may not play a significant role in the back-end flow. In general, as the design flow progresses toward a 
physically realizable form, the design database becomes progressively more laden with technology-
specific information, which cannot be stored in a generic HDL description. Finally, an integrated 
circuit is manufactured or programmed for use.

Simulating and debugging HDL code

Main article: Logic simulation

Essential to HDL design is the ability to simulate HDL programs. Simulation allows an HDL 
description of a design (called a model) to pass design verification, an important milestone that 
validates the design's intended function (specification) against the code implementation in the HDL 
description. It also permits architectural exploration. The engineer can experiment with design choices 
by writing multiple variations of a base design, then comparing their behavior in simulation. Thus, 
simulation is critical for successful HDL design.

To simulate an HDL model, an engineer writes a top-level simulation environment (called a testbench). 
At minimum, a testbench contains an instantiation of the model (called the device under test or DUT), 
pin/signal declarations for the model's I/O, and a clock waveform. The testbench code is event driven: 
the engineer writes HDL statements to implement the (testbench-generated) reset-signal, to model 
interface transactions (such as a host–bus read/write), and to monitor the DUT's output. An HDL 
simulator — the program that executes the testbench — maintains the simulator clock, which is the 
master reference for all events in the testbench simulation. Events occur only at the instants dictated by 
the testbench HDL (such as a reset-toggle coded into the testbench), or in reaction (by the model) to 
stimulus and triggering events. Modern HDL simulators have full-featured graphical user interfaces, 
complete with a suite of debug tools. These allow the user to stop and restart the simulation at any 
time, insert simulator breakpoints (independent of the HDL code), and monitor or modify any element 
in the HDL model hierarchy. Modern simulators can also link the HDL environment to user-compiled 
libraries, through a defined PLI/VHPI interface. Linking is system-dependent (Win32/Linux/SPARC), 
as the HDL simulator and user libraries are compiled and linked outside the HDL environment.

페이지 3 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조



Design verification is often the most time-consuming portion of the design process, due to the 
disconnect between a device's functional specification, the designer's interpretation of the specification, 
and the imprecision[citation needed] of the HDL language. The majority of the initial test/debug cycle is 
conducted in the HDL simulator environment, as the early stage of the design is subject to frequent and 
major circuit changes. An HDL description can also be prototyped and tested in hardware —
programmable logic devices are often used for this purpose. Hardware prototyping is comparatively 
more expensive than HDL simulation, but offers a real-world view of the design. Prototyping is the 
best way to check interfacing against other hardware devices and hardware prototypes. Even those 
running on slow FPGAs offer much shorter simulation times than pure HDL simulation.

Design Verification with HDLs

Main article: Functional verification

Historically, design verification was a laborious, repetitive loop of writing and running simulation test 
cases against the design under test. As chip designs have grown larger and more complex, the task of 
design verification has grown to the point where it now dominates the schedule of a design team. 
Looking for ways to improve design productivity, the EDA industry developed the Property 
Specification Language.

In formal verification terms, a property is a factual statement about the expected or assumed behavior 
of another object. Ideally, for a given HDL description, a property or properties can be proven true or 
false using formal mathematical methods. In practical terms, many properties cannot be proven 
because they occupy an unbounded solution space. However, if provided a set of operating 
assumptions or constraints, a property checker can prove (or disprove) more properties, over the 
narrowed solution space.

The assertions do not model circuit activity, but capture and document the "designer's intent" in the 
HDL code. In a simulation environment, the simulator evaluates all specified assertions, reporting the 
location and severity of any violations. In a synthesis environment, the synthesis tool usually operates 
with the policy of halting synthesis upon any violation. Assertion-based verification is still in its 
infancy, but is expected to become an integral part of the HDL design toolset.

HDL and programming languages

A HDL is analogous to a software programming language, but with major differences. Many 
programming languages are inherently procedural (single-threaded), with limited syntactical and 
semantic support to handle concurrency. HDLs, on the other hand, resemble concurrent programming
languages in their ability to model multiple parallel processes (such as flipflops, adders, etc.) that 
automatically execute independently of one another. Any change to the process's input automatically 
triggers an update in the simulator's process stack. Both programming languages and HDLs are 
processed by a compiler (usually called a synthesizer in the HDL case), but with different goals. For 
HDLs, 'compiler' refers to synthesis, a process of transforming the HDL code listing into a physically 
realizable gate netlist. The netlist output can take any of many forms: a "simulation" netlist with gate-
delay information, a "handoff" netlist for post-synthesis place and route, or a generic industry-standard 
EDIF format (for subsequent conversion to a JEDEC-format file).

On the other hand, a software compiler converts the source-code listing into a microprocessor-specific 
object-code, for execution on the target microprocessor. As HDLs and programming languages borrow 
concepts and features from each other, the boundary between them is becoming less distinct. However, 
pure HDLs are unsuitable for general purpose software application development, just as general-
purpose programming languages are undesirable for modeling hardware. Yet as electronic systems 
grow increasingly complex, and reconfigurable systems become increasingly mainstream, there is 

페이지 4 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조



growing desire in the industry for a single language that can perform some tasks of both hardware 
design and software programming. SystemC is an example of such—embedded system hardware can 
be modeled as non-detailed architectural blocks (blackboxes with modeled signal inputs and output 
drivers). The target application is written in C/C++, and natively compiled for the host-development 
system (as opposed to targeting the embedded CPU, which requires host-simulation of the embedded 
CPU). The high level of abstraction of SystemC models is well suited to early architecture exploration, 
as architectural modifications can be easily evaluated with little concern for signal-level 
implementation issues. However, the threading model used in SystemC and its reliance on shared 
memory mean that it does not handle parallel execution or lower level models well.

In an attempt to reduce the complexity of designing in HDLs, which have been compared to the 
equivalent of assembly languages, there are moves to raise the abstraction level of the design. 
Companies such as Cadence, Synopsys and Agility Design Solutions are promoting SystemC as a way 
to combine high level languages with concurrency models to allow faster design cycles for FPGAs 
than is possible using traditional HDLs. Approaches based on standard C or C++ (with libraries or 
other extensions allowing parallel programming) are found in the Catapult C tools from Mentor 
Graphics, the Impulse C tools from Impulse Accelerated Technologies, and the free and open-source 
ROCCC 2.0 (http://jacquardcomputing.com/roccc/) tools from Jacquard Computing Inc
(http://jacquardcomputing.com) . Annapolis Micro Systems, Inc.'s CoreFire Design Suite and National 
Instruments LabVIEW FPGA provide a graphical dataflow approach to high-level design entry. 
Languages such as SystemVerilog, SystemVHDL, and Handel-C seek to accomplish the same goal, 
but are aimed at making existing hardware engineers more productive versus making FPGAs more 
accessible to existing software engineers. There is more information on C to HDL and Flow to HDL in 
their respective articles.

Languages

Analogue circuit design

Abbreviation Name Use

AHDL
Analog Hardware Descriptive 
Language (HDL)

an open analog hardware description language

SpectreHDL SpectreHDL
a proprietary analogue hardware description 
language

Verilog-
AMS

Verilog for Analog and Mixed-
Signal

an open standard extending Verilog for analog and 
mixed analog/digital simulation

HDL-ATM HDL-A
a proprietary analogue hardware description 
language

Digital circuit design

The two most widely-used and well-supported HDL varieties used in industry are Verilog and VHDL.

페이지 5 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



페이지 6 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



페이지 7 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



Abbreviation Name Notice

ABEL
Advanced Boolean Expression 
Language

AHDL Altera HDL
a proprietary 
language from 
Altera

AHPL A Hardware Programing language

Bluespec

high-level 
HDL originally 
based on 
Haskell, now 
with a 
SystemVerilog
syntax

C-to-Verilog (http://www.c-to-
verilog.com) 

Converter from 
C to Verilog

Confluence
(http://www.tomahawkins.org) 

a functional 
HDL; has been 
discontinued

CoWareC

a C-based 
HDL by 
CoWare. Now 
discontinued in 
favor of 
SystemC

CUPL
Universal Compiler for Programmable 
Logic [3]

a proprietary 
language from 
Logical 
Devices, Inc.

ELLA
no longer in 
common use

ESys.net
.net framework 
written in C#

Handel-C
a C-like design 
language

HJJ
Hardware Join Java
(http://rcl.unisa.edu.au/h_join_java.html) 

based on Join 
Java

HML
(http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=820756) 

based on SML

Hydra
(http://www.dcs.gla.ac.uk/~jtod/Hydra/) 

based on 
Haskell

Impulse C another C-like HDL

ParC (http://parallel.cc) Parallel C++ C++ extended 
with HDL 
style threading 
and 

페이지 8 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



communication 
for task-
parallel 
programming

JHDL based on Java

Lava (http://raintown.org/lava/) 
based on 
Haskell

Lola
a simple 
language used 
for teaching

M
A HDL from 
Mentor 
Graphics

MyHDL
based on 
Python

PALASM

for 
Programmable 
Array Logic
(PAL) devices

ROCCC 2.0
(http://jacquardcomputing.com/roccc/) 

Riverside Optimizing Compiler for 
Configurable Computing

Free and open-
source C to 
HDL tool

RHDL (http://rhdl.rubyforge.org) 

based on the 
Ruby 
programming 
language

Ruby (hardware description language)

SystemC

a standardized 
class of C++ 
libraries for 
high-level 
behavioral and 
transaction 
modeling of 
digital 
hardware at a 
high level of 
abstraction, i.e. 
system-level

SystemVerilog

a superset of 
Verilog, with 
enhancements 
to address 
system-level 
design and 
verification

SystemTCL
SDL based on 
Tcl.

페이지 9 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



THDL++ (http://visualhdl.sysprogs.org/) Templated HDL inspired by C++ An extension 
of VHDL with 
inheritance, 
advanced 
templates and 
policy classes

Verilog

most widely-
used and well-
supported 
HDL

VHDL VHSIC HDL

most widely-
used and well-
supported 
HDL

Printed Circuit Board design

Several projects exist for defining printed circuit board connectivity using language based, textual, 
entry methods.

Abbreviation Name Notice

PHDL
PCB 
HDL

a free and open source HDL for defining printed circuit board 
connectivity

See also

■ Specification language
■ Modeling language
■ Hardware Verification Language
■ SystemC
■ SystemVerilog
■ Property Specification Language
■ OpenVera
■ Bluespec

References

1. ^ Barbacci, M. "The ISPS Computer Description Language," Carnegie-Mellon Univ., Dept. of Computer 
Science, 1977

2. ^ J. Mermet (editor): Fundamentals and Standards in Hardware Description Languages (Springer Verlag, 
1993)

3. ^ Eurich, J.P. and Roth, G. (1990): "EDIF grows up". IEEE Spectrum, Vol. 27, Issue 11, pp. 68 - 72.

External links

■ Verilog-AMS Technical Subcommittee (http://www.eda.org/verilog-ams/) 
■ HCT (http://hct.sourceforge.net/) - The HDL Complexity tool, used to determine design 

complexity.

페이지 10 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language



Retrieved from "http://en.wikipedia.org/w/index.php?
title=Hardware_description_language&oldid=473659981"
Categories: Hardware description languages Technical communication Logic design

■ This page was last modified on 28 January 2012 at 09:29.
■ Text is available under the Creative Commons Attribution-ShareAlike License; additional terms 

may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit 
organization.

페이지 11 / 11Hardware description language - Wikipedia, the free encyclopedia

2012-03-04http://en.wikipedia.org/wiki/Hardware_description_language


