Hardware description language - Wikipedia, the free encyclopedia HIOIXI 1/11

Hardware description language

From Wikipedia, the free encyclopedia

In electronics, a hardware description language or HDL is any language from a class of computer
languages, specification languages, or modeling languages for formal description and design of
electronic circuits, and most-commonly, digital logic. It can describe the circuit's operation, its design

and organization, and tests to verify its operation by means of simulation, (€& needed]

HDLs are standard text-based expressions of the spatial and temporal structure and behaviour of
electronic systems. Like concurrent programming languages, HDL syntax and semantics includes
explicit notations for expressing concurrency. However, in contrast to most software programming
languages, HDLs also include an explicit notion of time, which is a primary attribute of hardware.
Languages whose only characteristic is to express circuit connectivity between a hierarchy of blocks
are properly classified as netlist languages used on electric computer-aided design (CAD).

HDLs are used to write executable specifications of some piece of hardware. A simulation program,
designed to implement the underlying semantics of the language statements, coupled with simulating
the progress of time, provides the hardware designer with the ability to model a piece of hardware
before it is created physically. It is this executability that gives HDLs the illusion of being
programming languages, when they are more-precisely classed as specification languages or modeling
languages. Simulators capable of supporting discrete-event (digital) and continuous-time (analog)
modeling exist, and HDLs targeted for each are available.

It is certainly possible to represent hardware semantics using traditional programming languages such
as C++, although to function such programs must be augmented with extensive and unwieldy class
libraries. Primarily, however, software programming languages do not include any capability for
explicitly expressing time, and this is why they do not function as a hardware description language.
Before the recent introduction of SystemVerilog, C++ integration with a logic simulator was one of the
few ways to use OOP in hardware verification. SystemVerilog is the first major HDL to offer object
orientation and garbage collection.

Using the proper subset of virtually any (hardware description or software programming) language, a
program called a synthesizer (or synthesis tool) can infer hardware logic operations from the language
statements and produce an equivalent netlist of generic hardware primitives to implement the specified

behaviour.[caton needed] g ihesizers generally ignore the expression of any timing constructs in the
text. Digital logic synthesizers, for example, generally use clock edges as the way to time the circuit,
ignoring any timing constructs. The ability to have a synthesizable subset of the language does not
itself make a hardware description language.

Contents

1 History
2 Design using HDL
3 Simulating and debugging HDL code
4 Design Verification with HDLs
5 HDL and programming languages
6 Languages
m 6.1 Analogue circuit design
m 6.2 Digital circuit design
m 6.3 Printed Circuit Board design
m 7 See also

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04


InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조


Hardware description language - Wikipedia, the free encyclopedia HIOIXI 2/11

m 8 References
m 9 External links

History

The first hardware description languages were ISP (Instruction Set Processor),!!'! developed at Carnegie
Mellon University, and KARL, developed at University of Kaiserslautern, both around 1977. ISP was,
however, more like a software programming language used to describe relations between the inputs
and the outputs of the design. Therefore, it could be used to simulate the design, but not to synthesize
it. KARL included design calculus language features supporting VLSI chip floorplanning and
structured hardware design, which was also the basis of KARL's interactive graphic sister language
ABL, implemented in the early 1980s as the ABLED graphic VLSI design editor, by the
telecommunication research center CSELT at Torino, Italy. In the mid 80's, a VLSI design framework
was implemented around KARL and ABL by an international consortium funded by the commission of

the European Union (chapter in ). In 1983 Data-I/O introduced ABEL. It was targeted for describing
programmable logical devices and was basically used to design finite state machines.

The first modern HDL, Verilog, was introduced by Gateway Design Automation in 1985. Cadence
Design Systems later acquired the rights to Verilog-XL, the HDL-simulator that would become the de-
facto standard (of Verilog simulators) for the next decade. In 1987, a request from the U.S. Department
of Defense led to the development of VHDL (VHSIC Hardware Description Language, where VHSIC
is Very High Speed Integrated Circuit). VHDL was based on the Ada programming language. Initially,
Verilog and VHDL were used to document and simulate circuit-designs already captured and
described in another form (such as a schematic file.) HDL-simulation enabled engineers to work at a

higher level of abstraction than simulation at the schematic-level, and thus increased design capacity

from hundreds of transistors to thousands¢"ation needed]

The introduction of logic-synthesis for HDLs pushed HDLs from the background into the foreground
of digital-design. Synthesis tools compiled HDL-source files (written in a constrained format called
RTL) into a manufacturable gate/transistor-level netlist description. Writing synthesizeable RTL files
required practice and discipline on the part of the designer; compared to a traditional schematic-layout,

synthesized-RTL netlists were almost always larger in area and slower in performance©aion needed] - o
circuit design from a skilled engineer, using labor-intensive schematic-capture/hand-layout, would
almost always outperform its logically-synthesized equivalent, but synthesis' productivity advantage
soon displaced digital schematic-capture to exactly those areas that were problematic for RTL-
synthesis: extremely high-speed, low-power, or asynchronous circuitry. In short, logic synthesis
propelled HDL technology into a central role for digital design.

Within a few years, both VHDL and Verilog emerged as the dominant HDLs in the electronics
industry, while older and less-capable HDLs gradually disappeared from use. But VHDL and Verilog
share many of the same limitations: neither HDL is suitable for analog/mixed-signal circuit simulation.
Neither possesses language constructs to describe recursively-generated logic structures. Specialized
HDLs (such as Confluence) were introduced with the explicit goal of fixing a specific Verilog/VHDL
limitation, though none were ever intended to replace VHDL/Verilog.

Over the years, a lot of effort has gone into improving HDLs. The latest iteration of Verilog, formally
known as IEEE 1800-2005 SystemVerilog, introduces many new features (classes, random variables,
and properties/assertions) to address the growing need for better testbench randomization, design
hierarchy, and reuse. A future revision of VHDL is also in development, and is expected to match
SystemVerilog's improvements.

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



Hardware description language - Wikipedia, the free encyclopedia HIOIXI 3/11

Design using HDL

Efficiency gains realized using HDL means a majority of modern digital circuit design revolves around
it. Most designs begin as a set of requirements or a high-level architectural diagram. Control and
decision structures are often prototyped in flowchart applications, or entered in a state-diagram editor.
The process of writing the HDL description is highly dependent on the nature of the circuit and the
designer's preference for coding style . The HDL is merely the 'capture language'—often beginning
with a high-level algorithmic description such as a C++ mathematical model. Designers often use
scripting languages (such as Perl) to automatically generate repetitive circuit structures in the HDL
language. Special text editors offer features for automatic indentation, syntax-dependent coloration,
and macro-based expansion of entity/architecture/signal declaration.

The HDL code then undergoes a code review, or auditing. In preparation for synthesis, the HDL
description is subject to an array of automated checkers. The checkers report deviations from
standardized code guidelines, identify potential ambiguous code constructs before they can cause
misinterpretation, and check for common logical coding errors, such as dangling ports or shorted
outputs. This process aids in resolving errors before the code is synthesized.

In industry parlance, HDL design generally ends at the synthesis stage. Once the synthesis tool has
mapped the HDL description into a gate netlist, this netlist is passed off to the back-end stage.
Depending on the physical technology (FPGA, ASIC gate array, ASIC standard cell), HDLs may or
may not play a significant role in the back-end flow. In general, as the design flow progresses toward a
physically realizable form, the design database becomes progressively more laden with technology-
specific information, which cannot be stored in a generic HDL description. Finally, an integrated
circuit is manufactured or programmed for use.

Simulating and debugging HDL code

Main article: Logic simulation

Essential to HDL design is the ability to simulate HDL programs. Simulation allows an HDL
description of a design (called a model) to pass design verification, an important milestone that
validates the design's intended function (specification) against the code implementation in the HDL
description. It also permits architectural exploration. The engineer can experiment with design choices
by writing multiple variations of a base design, then comparing their behavior in simulation. Thus,
simulation is critical for successful HDL design.

To simulate an HDL model, an engineer writes a top-level simulation environment (called a testbench).
At minimum, a testbench contains an instantiation of the model (called the device under test or DUT),
pin/signal declarations for the model's I/O, and a clock waveform. The testbench code is event driven:
the engineer writes HDL statements to implement the (testbench-generated) reset-signal, to model
interface transactions (such as a host-bus read/write), and to monitor the DUT's output. An HDL
simulator — the program that executes the testbench — maintains the simulator clock, which is the
master reference for all events in the testbench simulation. Events occur only at the instants dictated by
the testbench HDL (such as a reset-toggle coded into the testbench), or in reaction (by the model) to
stimulus and triggering events. Modern HDL simulators have full-featured graphical user interfaces,
complete with a suite of debug tools. These allow the user to stop and restart the simulation at any
time, insert simulator breakpoints (independent of the HDL code), and monitor or modify any element
in the HDL model hierarchy. Modern simulators can also link the HDL environment to user-compiled
libraries, through a defined PLI/VHPI interface. Linking is system-dependent (Win32/Linux/SPARC),
as the HDL simulator and user libraries are compiled and linked outside the HDL environment.

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04


InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조


Hardware description language - Wikipedia, the free encyclopedia HIOIXI 4/11

Design verification is often the most time-consuming portion of the design process, due to the
disconnect between a device's functional specification, the designer's interpretation of the specification,

and the imprecision!*@ion needed] o ¢ the HDL language. The majority of the initial test/debug cycle is
conducted in the HDL simulator environment, as the early stage of the design is subject to frequent and
major circuit changes. An HDL description can also be prototyped and tested in hardware —
programmable logic devices are often used for this purpose. Hardware prototyping is comparatively
more expensive than HDL simulation, but offers a real-world view of the design. Prototyping is the
best way to check interfacing against other hardware devices and hardware prototypes. Even those
running on slow FPGAs offer much shorter simulation times than pure HDL simulation.

Design Verification with HDLs

Main article: Functional verification

Historically, design verification was a laborious, repetitive loop of writing and running simulation test
cases against the design under test. As chip designs have grown larger and more complex, the task of
design verification has grown to the point where it now dominates the schedule of a design team.
Looking for ways to improve design productivity, the EDA industry developed the Property
Specification Language.

In formal verification terms, a property is a factual statement about the expected or assumed behavior
of another object. Ideally, for a given HDL description, a property or properties can be proven true or
false using formal mathematical methods. In practical terms, many properties cannot be proven
because they occupy an unbounded solution space. However, if provided a set of operating
assumptions or constraints, a property checker can prove (or disprove) more properties, over the
narrowed solution space.

The assertions do not model circuit activity, but capture and document the "designer's intent" in the
HDL code. In a simulation environment, the simulator evaluates all specified assertions, reporting the
location and severity of any violations. In a synthesis environment, the synthesis tool usually operates
with the policy of halting synthesis upon any violation. Assertion-based verification is still in its
infancy, but is expected to become an integral part of the HDL design toolset.

HDL and programming languages

A HDL is analogous to a software programming language, but with major differences. Many
programming languages are inherently procedural (single-threaded), with limited syntactical and
semantic support to handle concurrency. HDLs, on the other hand, resemble concurrent programming
languages in their ability to model multiple parallel processes (such as flipflops, adders, etc.) that
automatically execute independently of one another. Any change to the process's input automatically
triggers an update in the simulator's process stack. Both programming languages and HDLs are
processed by a compiler (usually called a synthesizer in the HDL case), but with different goals. For
HDLs, 'compiler’ refers to synthesis, a process of transforming the HDL code listing into a physically
realizable gate netlist. The netlist output can take any of many forms: a "simulation" netlist with gate-
delay information, a "handoff" netlist for post-synthesis place and route, or a generic industry-standard
EDIF format (for subsequent conversion to a JEDEC-format file).

On the other hand, a software compiler converts the source-code listing into a microprocessor-specific
object-code, for execution on the target microprocessor. As HDLs and programming languages borrow
concepts and features from each other, the boundary between them is becoming less distinct. However,
pure HDLs are unsuitable for general purpose software application development, just as general-
purpose programming languages are undesirable for modeling hardware. Yet as electronic systems
grow increasingly complex, and reconfigurable systems become increasingly mainstream, there is

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04


InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조

InsoonJaehee
강조


Hardware description language - Wikipedia, the free encyclopedia HIOIXI 5/11

growing desire in the industry for a single language that can perform some tasks of both hardware
design and software programming. SystemC is an example of such—embedded system hardware can
be modeled as non-detailed architectural blocks (blackboxes with modeled signal inputs and output
drivers). The target application is written in C/C++, and natively compiled for the host-development
system (as opposed to targeting the embedded CPU, which requires host-simulation of the embedded
CPU). The high level of abstraction of SystemC models is well suited to early architecture exploration,
as architectural modifications can be easily evaluated with little concern for signal-level
implementation issues. However, the threading model used in SystemC and its reliance on shared
memory mean that it does not handle parallel execution or lower level models well.

In an attempt to reduce the complexity of designing in HDLs, which have been compared to the
equivalent of assembly languages, there are moves to raise the abstraction level of the design.
Companies such as Cadence, Synopsys and Agility Design Solutions are promoting SystemC as a way
to combine high level languages with concurrency models to allow faster design cycles for FPGAs
than is possible using traditional HDLs. Approaches based on standard C or C++ (with libraries or
other extensions allowing parallel programming) are found in the Catapult C tools from Mentor
Graphics, the Impulse C tools from Impulse Accelerated Technologies, and the free and open-source
ROCCC 2.0 (http://jacquardcomputing.com/roccc/) tools from Jacquard Computing Inc
(http://jacquardcomputing.com) . Annapolis Micro Systems, Inc.'s CoreFire Design Suite and National
Instruments LabVIEW FPGA provide a graphical dataflow approach to high-level design entry.
Languages such as SystemVerilog, SystemVHDL, and Handel-C seek to accomplish the same goal,
but are aimed at making existing hardware engineers more productive versus making FPGAs more
accessible to existing software engineers. There is more information on C to HDL and Flow to HDL in
their respective articles.

Languages

Analogue circuit design

Abbreviation Name Use
Analog Hardware Descriptive oy
AHDL Language (HDL) an open analog hardware description language
SpectreHDL | SpectreHDL il proprietary analogue hardware description
anguage
Verilog- Verilog for Analog and Mixed- an open standard extending Verilog for analog and
AMS Signal mixed analog/digital simulation

a proprietary analogue hardware description

HDL-A™  HDL-A |
anguage

Digital circuit design

The two most widely-used and well-supported HDL varieties used in industry are Verilog and VHDL.

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



Hardware description language - Wikipedia, the free encyclopedia HIOIXI 6/11

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



Hardware description language - Wikipedia, the free encyclopedia HIOIXI 7/11

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



Hardware description language - Wikipedia, the free encyclopedia

Abbreviation
ABEL
AHDL

AHPL

Bluespec

C-to-Verilog (http://www.c-to-
verilog.com)

Confluence
(http://www.tomahawkins.org)

CoWareC

CUPL

ELLA

ESys.net

Handel-C

HJJ

HML

(http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=820756)
Hydra

(http://www.dcs.gla.ac.uk/~jtod/Hydra/)

Impulse C
ParC (http://parallel.cc)

Name

Advanced Boolean Expression
Language

Altera HDL

A Hardware Programing language

Universal Compiler for Programmable

Logic P!

Hardware Join Java

(http://rcl.unisa.edu.au/h_join_java.html)

another C-like HDL

Parallel C++

http://en.wikipedia.org/wiki/Hardware description language

HIOIXI 8/11

Notice

a proprietary
language from
Altera

high-level
HDL originally
based on
Haskell, now
with a
SystemVerilog
syntax

Converter from
C to Verilog

a functional
HDL; has been
discontinued

a C-based
HDL by
CoWare. Now
discontinued in
favor of
SystemC

a proprietary
language from
Logical
Devices, Inc.

no longer in
common use

.net framework
written in C#

a C-like design
language

based on Join
Java

based on SML

based on
Haskell

C++ extended
with HDL
style threading
and

2012-03-04



Hardware description language - Wikipedia, the free encyclopedia

JHDL

Lava (http://raintown.org/lava/)

Lola

MyHDL

PALASM

ROCCC 2.0
(http://jacquardcomputing.com/roccc/)

RHDL (http://rhdl.rubyforge.org)

Ruby (hardware description language)

SystemC

SystemVerilog

SystemTCL

Riverside Optimizing Compiler for
Configurable Computing

http://en.wikipedia.org/wiki/Hardware description language

HIOIXI 9/11

communication
for task-
parallel
programming

based on Java

based on
Haskell

a simple
language used
for teaching

A HDL from
Mentor
Graphics

based on
Python

for
Programmable
Array Logic
(PAL) devices

Free and open-
source C to
HDL tool

based on the
Ruby
programming
language

a standardized
class of C++
libraries for
high-level
behavioral and
transaction
modeling of
digital
hardware at a
high level of
abstraction, i.e.
system-level

a superset of
Verilog, with
enhancements
to address
system-level
design and
verification

SDL based on
Tecl.

2012-03-04



Hardware description language - Wikipedia, the free encyclopedia HIOIXl 10/11

THDLA++ (http://visualhdl.sysprogs.org/) | Templated HDL inspired by C++ An extension
of VHDL with
inheritance,
advanced
templates and
policy classes

most widely-
used and well-
supported
HDL

most widely-
used and well-
supported
HDL

Verilog

VHDL VHSIC HDL

Printed Circuit Board design

Several projects exist for defining printed circuit board connectivity using language based, textual,
entry methods.

Abbreviation| Name Notice

PCB a free and open source HDL for defining printed circuit board

PHDL HDL connectivity

See also

Specification language
Modeling language

Hardware Verification Language
SystemC

SystemVerilog

Property Specification Language
OpenVera

Bluespec

References

1. ™ Barbacci, M. "The ISPS Computer Description Language," Carnegie-Mellon Univ., Dept. of Computer
Science, 1977

2. ~J. Mermet (editor): Fundamentals and Standards in Hardware Description Languages (Springer Verlag,
1993)

3. " Eurich, J.P. and Roth, G. (1990): "EDIF grows up". IEEE Spectrum, Vol. 27, Issue 11, pp. 68 - 72.

External links

m Verilog-AMS Technical Subcommittee (http://www.eda.org/verilog-ams/)
m HCT (http://hct.sourceforge.net/) - The HDL Complexity tool, used to determine design
complexity.

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



Hardware description language - Wikipedia, the free encyclopedia HIOIXl 11/11

Retrieved from "http://en.wikipedia.org/w/index.php?
title=Hardware description_language&oldid=473659981"

Categories: Hardware description languages | Technical communication | Logic design

m This page was last modified on 28 January 2012 at 09:29.

m Text is available under the Creative Commons Attribution-ShareAlike License; additional terms
may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit
organization.

http://en.wikipedia.org/wiki/Hardware description language 2012-03-04



