Microprocessor
Ch.10 Serial Port Programming




OUTLINE

 Basics of Serial Communication

* Serial port programming in Assembly

 Programming the second serial port

e Serial port programming in C



SERIAL COMMUNICATION

* Serial communication v.s. parallel communication
— Computer transfer data in two ways: parallel, serial
— Parallel communication
» 8 or more parallel lines are used to transfer data
— E.g. connecting 8051 to LCD, data bus, connecting to hard drive
* More data can be transferred in unit period of time
» Usually used for short distance data transfer
— Long parallel wires function like antenna, and will leak signal during Tx &)
— The leaked signals will cause mutual interference for signals in wire (cross-talk)
— Serial communication
» Use I data line to transfer data
— Data is transmitted 1 bit a time
» Usually used for data transfer over longer distance

Serial Transfer Parallel Transfer

DO -
Sender Receiver



owner
노트
also very expensive


SERIAL COMMUNICATION: DUPLEX

* Simplex, Half-duplex, and full-duplex
— Simplex: communication can occur in only one direction (A = B)
» E.g. pager, broadcast radio

— Half-duplex: communication can happen in both directions, but only one at a
time (A = B, or B 2 A, but not simultaneously)

* E.g. Police radio (walki-talki)
* Only 1 channel (data line) is enough
— Full-duplex: communication can happen in both directions simultaneously
» E.g. telephone
» Two channels (data lines) are required.
e Full-duplex = two simplex

Simplex Transmitter Receiver

Receiver

Half Duplex Transmitter -
g

Receiver Transmitter

Receiver

Full Duplex Transmitter

Receiver Transmitter

NN
0



SERIAL COMMUNICATION: ASYNCHRONOUS

* Asynchronous serial communication
— Data 1s transmitted in bursts without following a specific clock
» Data can be transmitted at any time.
« Synchronous transmission: data can only be transmitted at special instants
— When there is no data, channel remains constant to indicate “idle” (no information).
» e.g. some system use “high” voltage to indicate idle
« How does the receiver tell the difference between “idle” and “111111117?
— Framing
» Data characters are placed between start and stop bits
 Start bit: 1 bit (e.g. low)
 Stop bit: 1 bit (e.g. high), or, 2 bits (e.g. high, low)
* E.g. 8-bit ASCII + 1 start bit + 1 stop bit = 10 bits/frame

~ -

L] L] -
[ ] [ [ ] [ ]
[

L

0 1 start
bit

goes out last D7 DO  goes out first

stop §
bit }

mark

space

o

o
o
-

= 4 0 TTTTTTNL 8 e
LA N ]

E3] ZREZEN RN N NI
(XNl ZRE RN LN R N
LR R T



SERIAL COMMUNICATION: TRANSFER RATE

 Transfer rate
— Bitrate
* Number of bits that can be transferred in unit time (1 second)
 Unit: bps (bit per second), Kbps (kilo-bit per second), Mbps (mega-bit per
second), Gbps (Giga-bit per second), Tbps (Terra-bits per second)
— Terminology conventions
 For storage space (RAM size, ROM size, disk size)
— 1 kilo = 2710, 1 mega = 1720, 1 giga= 1730
* For data rate
— 1 kilo= 1,000, 1 mega = 1,000,000, 1 giga = 1,000,000,000
— Baud rate
* The number of symbols that can be transferred in unit time (1 second)

* For some systems, 1 symbol = 1 bit, for some other systems, 1 symbol
can be used to represent multiple bits (e.g. 1 symbol = 8 bits)



SERIAL COMMUNICATION: STANDARD

e Communication standard

— A set of rules that must be followed by communication devices

To ensure that communication devices from different manufactures can
interoperate with each other

— Example rules:

Which voltage used to represent ‘0°, which voltage used to represent ‘1°
How many start bits, how many stop bits

Which voltage(s) used for start bits, which voltage(s) used for stop bits
How many bits in one frame (7 bits, 8 bits, 10 bits, ...)

The format of control signals, how many control pins

— Example standards

 RS232

RS232, IEEE 802.11 (WiF1), IEEE 802.16 (WiMax), WCDMA, ......

— The most popular serial communication standard
— Developed by Electronics Industries Association (EIA) in the 1960s’
— Still widely used today



SERIAL COMMUNICATION: RS232

« DTE v.s. DCE

— DTE: data terminal equipment (e.g. PC)

— DCE: data communication equipment (e.g. modem, switch, router, and other
communication device)

— DTE and DCE have different pin definitions

 RS232 connectors o%‘z ®
— DB-25 25-pin connector h .
— DB-9 9-pin connector o('\:\‘o
— Pin definition for DTE e

» We can either use all 9 pins, or just use _ -
in  Description

3 pins: TxD, RxD, GND Data carricr detect (DCD)

Received data (RxD)

* TxD: transmit data Transmitted data (TxD)

e RxD: receive data Data terminal rcady (DTR)

Signal ground (GND)

* GND: signal ground Data sct ready (DSR)

Request to send (RTS)

* The remaining pins are for more
Clear to send (CTS)

O 00 [~ |y |n ] da [t {1 || g

sophisticated conrols Ring indicator (RI)



owner
강조

owner
강조

owner
강조


SERIAL COMMUNICATION: RS232

Different RS232 cables

— DTE €= DCE
Computer Telephune
E Male DEZ5 Female DEZS Line
S / =ty \ wm\b
== P — ||
DTE DCE
Daa Data

Terminal Oroutdeminating
Equiprnent Equiprn esit

— DCE €= DCE, or DTE €<= DTE

E Ve

DTE

Data
Terminal
Equiprn et

Data
Terminal
Equiprn et

(3) AxD TxD (3)
(2] TxD RxD (2)
{4) ATS CTS (4}
(5) CTS ATS (5)
{20) OTA DSA (20)
(6) DSR DTR (8)
(8) DCD DCOD (8)
22) Al — @A (27
{7} GND GMND (T}
Typical DTE-to-OCE cable

straight-through cable

(3) RxD RxD (3)
(2) Ta) ——F e TxD (2)
{4) ATS ¢ ATS (4)
{5) CTS CTS {5)
(20} DTR DTR (20)
(6) DSR ——"——— D8R (6)
(8) DCD ——————— DCD (8}
(22) R R (22)
(7) GND GND (7)

Typical OTE-to-DTE null modem cable

Null-modem cable


owner
강조

owner
강조

owner
강조

owner
강조


SERIAL COMMUNICATION: RS232

10

* Signal level of RS232

— ‘1’ is represented by -3 to -25 V

— ‘0’ 1s represented by +3 to +25 V

— They are not TTL (transistor-transistor logic) compatible. In TTL

e ‘1’:22t05V
* ‘0:0t0 0.8V
— 8051 1s TTL compatible:

» 8051 and RS232 devices cannot be directly connected together!

- MAX232

— A voltage converter (line driver) that can convert RS232 signal to TTL

voltage level
— 1 MAX232 chip can be used
to drive 2 RS232 ports

Vece |

. 16 2 _—r +
~—11

c1 =13 MAX232 5

A I:If c4

c2]5 =7
T T1ouT

1 14
Riout Rim

12

10

T2IN

T2out

AY XY

R2out

R2In

9

TTL side

154__

RS232 side

8051

TXDO (P3.1)

RXDO (P3.0)

MAX232
11 14

10

12



owner
강조

owner
강조


OUTLINE

11

* Serial port programming in Assembly



ASSEMBLY: 8051 AND UART

« 8051
— Most 8051 has 1 serial port
* P3.0 (RXDO0), P3.1 (TXDO0)
— DS89C4x0 has 2 serial ports
 P1.2 (RXDI), P1.3 (TXD1)
* P3.0 (RXDO0), P3.1 (TXDO0)

« UART

— Universal asynchronous receiver transmitter

12

DIP -
Ny
2y Proh 40 [ Vec
(T2EX) P11 12 38 ] PO.O(ADD)
(RXD1) P1.2|:E 38 [ P01 (ADT)
IXD1) P1.3 DS 37 [ P02 (AD2)
(INT2) P1.4 [ 5 36 [1 PO.3 (AD3)
(NT3) P15 6 89C4x0 a5 [ P04 (AD4)
(INT4) P16 7 (89C420 34 [] P05 (ADS)
(T5) P17 8 89C430 33 [ rosanm
RST[]9 89C440 52 [ rovaD7)
(AXD0) Pnn:]n 89C450) 31 [ EAIVPP
(TX00) P31 ] 1 30 [ ALEFRDG
(TNTO) P32 [ 12 29 [] PSEN
(NTT) P33 [ 13 28 [ p2.7(a15)
(T0) P3a ] 14 27 [ P26 (Aa14)
(rmyrasg1s 26 [] P2.5(A13)
(WH) P38 [] 18 25 [] P24 (n12)
{RD) P3.7 717 24 [ P23 (A1)
XTALZ ] 18 23 [ P22 (A10)
XTAL1 [ 19 22 [ p2.1(A9)
GND [ 20 21 [ P20 (am)

— An integrated circuit commonly used in conjunction with RS232

e [t’s built inside 8051

» The circuit can interpret communication command

— When an ASCII code is sent to UART, it will automatically add start

and stop bits before transmit it through serial port

— When receiving data from serial port, UART will automatically

detect start bit and stop bit, remove the start and stop bits from the

received data, and send the pure data to the CPU

— UART saves us from the details of communication standards.


owner
강조

owner
강조

owner
강조

owner
강조


13
ASSEMBLY: BAUD RATE AND TIMER

 Baud rate in 8051 and timer
— The baud rates supported by 8051 (unit: bps): 9600, 4800, 2400, 1200
— How to set the baud rate?
» Baud rate in 8051 can be set via timer 1 in mode 2 (8-bit auto-reload)

» When used for serial port, the frequency of timer tick is determined by

(XTAL/12)/32
11.0592 MHz
Machine cycle freq. 28,800 Hz
oscillator 921.6 kHz by UART | To Timer 1 to
i set the baud

rate

1 bit is transmitted for each timer period (the time duration from timer
start to timer expires)

Baud Rate THI1 (Decimal) &) TH1 (Hex)
9600 -3 FD
4800 -6 FA
2400 -12 F4
1200 24 ES

Note: XTAL = 11.0592 MHz.


owner
강조

owner
강조

owner
노트
negative value


14
ASSEMBLY: BAUD RATE AND TIMER

« Calculation of baud rate

— With XTAL =11.0592, find the TH1 value needed to have the baud rate 9600
* Clock frequency of timer clock: f=(11.0592 MHz / 12)/32 = 28,800Hz
» Time period of each clock tick: TO = 1/f=1/28800
 Duration of timer (1 timer cycle): (# of clock ticks in
* 9600 baud - duration of 1 symbol: 1/9600—>1 ti
« 1/9600 = 1/f * (# of clock ticks in timer)
« # of clock ticks in timer = /9600 = 28800/9600 =3 =» TH1 =-3 &
 Similarly, for baud 2400

— # of clock ticks = /2400 = 12 =» TH1 = -12

« Example: set baud rate at 9600
MOV TMOD, #20H
MOV THI, #-3
SETB TR1

— When connecting two devices through serial port, both devices must have the
same baud


owner
강조

owner
강조

owner
강조

owner
선

owner
노트
3 ticks in timer - 1 symbol period


ASSEMBLY: BAUD RATE-AND TIMER

15

 Example

— If the value in TH1 1s B8, find the baud rate of the serial port (XTAL =
11.0592MHz)


owner
줄 긋기


ASSEMBLY: REGISTERS

16

* SBUF register (Serial buffer)

— An 8-bit register used for serial communication

— It holds the data to be transferred or received from serial port.

— E.g. to send ‘D’ to serial port: MOV SBUF, #'D’

» The data in SBUF will be automatically processed by UART, then sent to
serial port (e.g. pin TXDO)

— E.g. to receive data from serial port: MOV A, SBUF

* Once UART receives data from serial port (e.g. pin RXDO0), it will strip

the start and stop bits and then put the data in SBUF S

— It serves as a buffer between CPU and serial ports

 SCON register (Serial control register)

— An 8-bit register used to program the start bit, stop bit, and data bits of data
framing, and some other serial related processing

SMO | SM1

SM2 | REN | TBS

RB8

TI

RI



owner
강조

owner
강조

owner
강조

owner
강조

owner
강조

owner
강조

owner
노트
Then transferred to A

owner
강조


ASSEMBLY: REGISTERS

17

SCON register
SMO | sMi | sM2 [ REN [ TB8 [ RB8 | TI [ RI

— SMO, SM1 (serial port mode)
» Specify framing format, how to calculate baud
* (SMO, SM1)=(0,1), mode 1: 8-bit data, 1 start bit, 1 stop bit, variable
baud set by timer. Most commonly used

* The other three modes are rarely used (not required for this course)
— (SMO0,SM1) = (0,0), mode 0: fixed baud = XTAL/12
— (SMO, SM1) = (1,0), mode 2: 9-bit data, fixed baud
— (SMO, SM1) = (1, 1), mode 3: 9-bit data, variable baud

— SM2
* SM2 = 0: single processor
» SM2 = 1: multiprocessor communication (not required for this course)



ASSEMBLY: REGISTERS

* SCON register
SMO | sMi | sM2 [ REN [ TB8 [ RB8 | TI [ RI

— REN (Receive Enable)
» Enable/disable reception

 REN = 1: the 8051 will accept incoming data from serial port
* REN = 0: the receiver is disabled
 E.g. SETB REN, CLR REN, SETB SCON.4, CLR SCON.4
— TBS
« Used by modes 2 and 3 for the transmission bit 8 (the 9™ data bit)
* CLR TBS8 when using mode 1
— RBS
« Used by modes 2 and 3 for the reception of bit 8 (the 9" data bit)
» Used by mode 1 to store the stop bit



ASSEMBLY: REGISTERS

* SCON register
SMO | sMi | sM2 [ REN [ TB8 [ RB8 | TI [ RI

—/) — TI (transmit interrupt)
 When 8051 finishes the transfer of the 8-bit character, it set TI to ‘1’ to
indicate that it is ready to transfer the next character
» The TI is raised at the beginning of the stop bit
— RI (receive interrupt)
* When 8051 receives a character
— 1. The UART removes start bit and stop bit
— 2. The UART puts the 8-bit character in SBUF

— 3. Rl is set to ‘1’ to indicate that a new byte is ready to be picked up
in SBUF

» Rl s raised halfway through the stop bit



owner
사각형

owner
노트
in page 8, RTS (ready to send), CTS (clear to send) 

TI: Transmit interrupt <-> RTS
RI: Receive Interrupt <-> CTS



20

ASSEMBLY: TRANSMISSION PROGRAM

 Example

— Wirite a program to transfer letter “A” serially at 4800 baud, continuously

AGAIN:
HERE:

— The data in SBUF 1is transmitte

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV THI1, #-6 ; 4800 baud
MOV SCON, #50H ; 0101 0000 (mode 1, single
; processor,REN=1)
SETB TR1 ; start timer
MOV SBUF, # A’ ; store ‘A’ in SBUF
JNB TI, HERE ; wait for TI = 1 (transmission over)

; clear TI for next transmission
SIMP AGAI ; repeat

rially, one bit at a time

» If we write a new character to SBUF before T1I is raised (the transmission of
the previous character is not over yet), part of the original data will be lost

SMO | sMi | sM2 T REN | TB8 [ RB8 | TI [ RI



JHY
강조

JHY
선


21

ASSEMBLY: TRANSMISSION PROGRAM

 Example

— Write a program to transfer letter “YES” serially at 9600 baud, 8-bit data, 1 stop
bit, continuously

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)

MOV THI1, #-3 ; 9600 baud

MOV SCON, #50H ; 0101 0000 (mode 1, single processor, REN=1)
SETB TR1 ; start timer

AGAIN: MOV A, #Y’ ; store ‘A’ in SBUF

ACALL TRANSFER
MOV A, #E’

ACALL TRANSFER

MOV A, #'S’

ACALL TRANSFER

STMP AGAIN

CLR TI :
SIMP AGAIN :

TRANSFER: MOV SBUF, A

HERE:

JNB TI, HERE
CLR TI
RET

SMO | SM1 SM2 | REN | TB8 | RBS TI | RI



JHY
강조

JHY
강조

JHY
강조

JHY
강조

JHY
강조


ASSEMBLY: RECEPTION PROGRAM

22

 Example

— Program the 8051 to receive bytes of data serially, and put them in P1. Set the
baud rate at 4800, 8-bit data, 1 stop bit

MOV TMOD, #20H

MOV THI, #-6 ; 4800 baud
MOV SCON, #50H ; mode 1
SETB TR1
HERE: JNB RI, HERE ; wait for char to come in (RI=1)
MOV A, SBUF ; save Incoming byte in A
OV PI, A ; send to port 1
CLR RI ; clear, get ready for next byte
SIMP HERE

— RI=1 indicates a new byte is copied in SBUF
— We need to copy the data in SBUF to another place immediately after RI = 1
» Otherwise the contents in SBUF will be overwritten by the next character


JHY
강조

JHY
강조

JHY
강조

JHY
강조

JHY
선

JHY
강조


23

ASSEMBLY: TRANSMISSION AND RECEPTION

 Example

— Write a program to (1) send to PC “We are ready”; (2) receive data from PC
and send it to P1; (3) read data from P2 and send it to PC. (2) and (3) should

be performed continuously.

- ORG
MOV
MOV
MOV
MOV

- SETB

S Moy

H'1: = CILR

' MOVC

Jz

ACALL

INC

SIMP

B 1l: . MOV
.~ ACALL
ACALL
MOV
SIMP

0 .

P2, #0FFH

TMOD, #20H
TH1, #0FAH
SCON, #50H
TR1

" DPTR, #MYDATA

A
A, @A+DPTR
B 1

SEND

-DPTR

H 1

A, P2
SEND
RECV
P1,A

B 1

;make P2 an input port
;Timer 1, mode 2{auto-reload)
;4800 baud rate

i8-bit,1 stop, REN enabled
;start Timer 1

;load pointer for message

;get the character

;1f last character get out
;otherwise call transfer
;next one | .
;stay in loop

~jread data on P2

;transfer it serially
;get the serial data
;display it on LEDs

;stay in loop indefinitly



24

ASSEMBLY: TRANSMISSION AND RECEPTION

« Example (Cont’d)

j=-=r--=--------serial data transfer. ACC has the data
SEND: = MOV  SBUF,A ;load the data |
.24 JNB  TI,H_ 2 ;stay here until last bit gone
1L CLR TI ;jget ready for next char .
RET jreturn to caller
et b b bkt Rl receive data serlally in ACC
RECV: JNB RI,RECV ;wait here for char
| e MOV A, SBUF ;8ave it in ACC |
s CLR RI . ,get ready for next char
3f[m - RET - - return to caller o
R e --------The message
MYDATA: DB "We Are Ready",0



ASSEMBLY: DOUBLE BAUD RATE

25

 The baud rate can be doubled by using the PCON register
— PCON: (Power control)

SMOD -~ - -- GF1 GFO PD IDL

— SMOD = 1: double the baud generated by crystal and/or timer
— SMOD = 0: the baud is determined by crystal and/or timer
— NOT bit addressable!
— How to set SMOD?
« Use register A as an intermediate register

MOV A, PCON

SETB ACC.7 ; A.7 1s invalid!

MOV PCON, A

TH1 (Decimal) (Hex) SMOD=0 SMOD-=1

-3 FD 9,600 19,200
-6 FA 4,800 9,600
~-12 F4 2,400 4,800
-24 ES8 1,200 2,400

Note: XTAL = 11.0592 MHz.



ASSEMBLY: EXAMPLES

26

 Example
— Find the baud rate if TH1 =-2, SMOD =1, XTAL =11.0592 MHz

— Write a program to use serial port with baud 19200. (1) read a byte from serial
port. (2) if the byte is ‘A’, write ‘1’ back to serial port (3) if the byte is not
‘A’, write ‘0’ back to serial port



OUTLINE

27

 Programming the second serial port



SECOND PORT

28

e Second serial port

— So far, all of our discussions are about the first serial port (serial port 0)

« TXDP3.1,RXD P3.0
* SFR addresses:

— SCON = 98H, SBUF = 99H

— TL1=8BH, TH1 = 8DH, TCON = 88H, PCON = 87H ’

DS89CAx0

TxDO (P3.1)

MAX232

7

RxDO (P3.0)

TXD1 (P1.3)

w N w N
Serial #1  Serial #0

J

AxD1 (P1.2)

— Some 8051/8052 chips have a 2"d serial port (serial port 1)

« TXDPI1.3,RXDP1.2

* SCON (98H) and SBUF (99H) can only be used for serial port 0
« TLI1, THI, TCON, PCON can be used for both serial ports
* We need two new registers SCON and SBUF for serial port 1. In DS89C4x0, for

serial port

— SCONI1 = COH, SBUF1 =CI1H
— TL1 =8BH, TH1 =8DH, TCON = 88H, PCON = 87H

SFR First Serial Port Second Serial Port
SCON (byte address) SCONO = 98H SCON1 = COH
SBUF (byte address) SBUFO = 99H SBUF1 =CI1H

TL (byte address) TL1 = 8BH TL1 = 8BH

TH (byte address) TH1 = 8DH TH1 = 8DH

TCON (byte address) TCONO = 88H TCONO = 88H
PCON (byte address) PCON = 87H PCON = 87H




SECOND PORT: EXAMPLE

29

Example

— Write a program for the second serial port to continuously transfer “A” at

4800 baud

AGAIN:

SENDCOM2:

HERE:

SBUF1 EQU 0C1H
SCON1 EQU 0COH
TI1 BIT 0C1H
RI1 BIT 0COH

MOV TMOD, #20H
MOV THI, #-6

MOV SCONI1, #50H
SETB TR1

MOV A, #A°
ACALL SENDCOM2
SIMP AGAIN

MOV SBUFI1, A
JNB TI1, HERE
CLR TII

RET

; use timer 1

; address for 2" SBUF
: address for 2" SCON
: bit address of 24 TI1
; bit address of 27 RI1

; 4800

; SBUF1
TI1



30
SECOND PORT: EXAMPLE

 Example

— A switch is connected to P2.0. (1) if SW=0, send “Hello” to serial port 0. (2)
if SW =1, send “Goodbye” to serial port 1. 9600 baud. Requirements

* A. write subroutines: SENDCOMO0, SENDCOMI1

» B. Store “Hello” and “Goodbye” in ROM. Both strings are terminated by
0

e (. Use directives.

SBUF1 EQU 0C1H ; address for 2" SBUF
SCON1 EQU 0COH ; address for 2" SCON
TI1 BIT 0C1H ; bit address of 2 TT1

RI1 BIT 0COH ; bit address of 2" RI1



OUTLINE

31

e Serial port programming in C



C PROGRAMMING

32

 Example

— Write an 8051 C program to receive a byte of data from serial port 0, then
send it back to serial port 0. Do this continuously.
#include <reg51.h>
void SerTx(unsigned char);
void SerRx(unsigned char *);
void main(void)
{
char byteBuf;
TMOD = 0x20; /[ timer 1, 8-bit auto-reload
TH1 = 0XFD; // or: TH1 = -3, 9600 baud
SCON = 0x50;
TR1 =1; // start timer
while(1)
{
SerRx(&byteBuf);  // read byte from serial port
SerTx(byteBuf); // send byte back to serial port



C PROGRAMMING

33

Example
— (Cont’d)

void SerTx(unsigned char x)

{
SBUF =x; // put the char in SBUF register
while(TI = =0); // wait until transmitted
TI=0;
j
void SerRx(unsigned char * pX)
{
while(RI = =0); // wait until received
RI=0;

*pX = SBUF; // copy the data in SBUF to (pX)



C PRGRAMMING

34

Example
— Write a C program to transmit a letter ‘A’ serially at 4800 baud continuously.

Use the 2"4 serial port with 8-bit data and 1 stop bit.

#include <reg51.h>
sfr SBUF1 = 0xCl;
sfr SCON1 = 0xCO0;
sbit TI1 = 0xCl;
void main(void)

{

TMOD = 0x20;

THI1 = 0XFA;

SCONI1 = 0x50;

TR1 =1;

while (1)

{
SBUF1 =‘A’;
while(TI1 == 0);
TI1 =0;

h

// timer 1, mode 2
// timer 1

// SCONI1 for 2"d serial port
// start timer 1

// SBUF1 for 2" serial port
// TI1 for 2™ serial port



