Microprocessor
Ch.11 Interrupts

OUTLINE

* 8051 Interrupts

e Timer Interrupts

 External Hardware Interrupts

* Serial Port Interrupts

* Interrupt Priority

e Interrupt Programming in C

INTERRUPTS

Whatis interrupt?

— Example: timer

MOV TMOD, #02 ; 1. timer 0, mode 2 (8-bit auto reload)
HERE: MOV THO, #3EH ; 2. load init value
SETB TRO ; 3. start timer
AGAIN: JNB TFO0, AGAIN ; 4. monitor TFO until timer overflows
CLR TRO ; 5. stop timer
CLR TFO ; 6. clear flag

— Polling: the CPU continuously monitor the status of a device (e.g. check the
status of TFO, wait until TFO turns to 1)

» The status monitoring process wastes a lot of MCU resources
— Interrupt

» Whenever any device needs service (e.g. timer expires), it will notify the
MCU by sending an interrupt signal.

« Upon receiving the interrupt signal, the CPU interrupts whatever it is
doing, and serve the device (e.g. stop timer) by executing a special
subroutine: Interrupt Service Routine (ISR)

* Once ISR is done, CPU will go back to the location before interrupts.

INTERRUPTS

* Interrupt service routine
— Special subroutines to be executed by CPU upon interrupt
— Different interrupts have different subroutines

1\ Interrupt sign!z! %

Temperature sensing and display

— Example: a program needs to (1) send the letter ‘A’ to P1 every 100ms; (2)
continuously sensing and display temperature
1. start timer, then display temperature on display
» 2. when timer expires, it sends an interrupt signal to CPU
» 3. CPU stops temperature sensing and jump to ISR
e 4. When ISR 1s over, the CPU returns to where it left and continue
temperature sensing

— Multiple devices can be connected to MCU, each of them has their unique
ISRs. Whenever a device needs service, it will send interrupt to CPU and
CPU can execute the corresponding ISR.

INTERRUPTS: SIX INTERRUPTS IN 8051

e Six interrupts in 8051
— There are totally six different interrupts in 8051
» Each interrupt has its own ISR
» Each ISR has its unique starting address

» When a particular interrupt is detected by CPU, PC will jump to the
corresponding ISR starting address to execute the ISR.

— Timer interrupts (2 interrupts)
* 1 interrupt for timer O (ISR starting address: 000BH)
* 1 interrupt for timer 1 (ISR starting address: 001 BH)
— Serial ports interrupt (1 interrupt)
* 1 interrupt used to indicate Tx or Rx 1s done (ISR starting address: 0023H)
— External hardware interrupts (2 interrupts)
» P3.2: external interrupt O (INTO) (ISR starting address: 0003H)
» P3.3: external interrupt 1 (INT1) (ISR starting address: 0013H)
— Reset (1 interrupt)
» when reset is activated, the 8051 jumps to address 0 (ISR address: OH)

INTERRUPTS: INTERRUPT VECTOR TABLE

e Interrupt vector table
— The starting address for each ISR

Interrupt ROM Location (Hex) Pin Flag Clearing
Reset 0000 9 Auto

External hardware interrupt 0 (INT0) 0003 P3.2 (12) Auto

Timer O interrupt (TFQ) 000B Auto

External hardware interrupt 1 (INT1) 0013 P3.3 (13) Auto

Timer 1 interrupt (TF1) 001B ' Auto

Serial COM interrupt (RI and TI) 0023 Programmer

clears it.

— If interrupts are enabled, ROM addresses 0003 — 0023 are taken by interrupt
vector table

» We need to bypass interrupt vector table

ORG 0
LIMP MAIN ; bypass interrupt vector table

; ISRs can be written from 0003 — 0029 H
ORG 30H

MAIN: MOV A, #23H ; main prgram

INTERRUPTS: ENABLE INTERRUPT

 Enable/disable interrupts

— Upon reset, all interrupts are disabled: the CPU will not respond to any
interrupt.

— In order to use an interrupt, it must be enabled by software

— Register: IE (interrupt enable, bit addressable)
D7 DO

| eaA | - | ET2 | BS | ET1 | EX1 | ETO | EXO |

» EA=O0: disable all interrupts. EA=1: each interrupt is enabled individually.
« ET2 = 1: enable interrupt for timer 2
» ES = 1: enable interrupt for serial port
 ET1 = 1: enable interrupt for timer 1
« EX1 = 1: enable external interrupt 1
» ETO = 1: enable interrupt for timer 0
» EXO = 1: enable external interrupt 0
— Example
MOV IE, #10010110B
MOV IE, #00010110B

OUTLINE

e Timer Interrupts

TIMER INTERRUPTS

Roll-over timer flag and interrupt
— Recall: when timer roll-over, TFO or TF1 is set to 1
— Polling: HERE: JNB TF0, HERE
» The entire CPU is tied down and waiting for TF to be set to 1
— Interrupt
 If timer interrupt is enabled (SETB IE.3 for timer 0, SETB IE.5 for timer
1),

— whenever TFO or TF1 is set to 1, a timer interrupt will be
automatically generated

TFO Timer O Interrupt Vector TF1 Timer 1 Interrupt Vector

] | e— 000BH | | — 001BH
jumps to jumps to

TIMER INTERRUPTS

 Example

— Write a program that continuously (1) gets 8-bit data from PO and sends it to
P1 while simultaneously (2) create a square wave of 200 us period on P2.1

ORG 0000H
LIMP MAIN ; by pass interrupt vector table
jmmmmmmmmm e timer 0 ISR —---————eemmm-
ORG 000BH ; timer 0 ISR
CPL P2.1 ; toggle P2.1
RETI ; return from ISR
jmmmmmmm o main program--------------
ORG 0030H
MAIN: MOV TMOD, #02H ; timer 0, mode 2 (auto-reload)
MOV PO, #0FFH ; input
MOV THO, #-92 ; initial value
MOV IE, #82H ; IE=10000010
SETB TRO ; start timer
;-—-P0 2> Pl--—---
BACK: MOV A, PO
MOV P1, A
SIMP BACK
END

1. Due to interrupt, we don’t need to monitor TFO
2. No need to clear TFO!

11
TIMER INTERRUPTS

 Example

— Write a program to generate a square wave of 50Hz frequency on P1.2.

* 50Hz - timer delay = 10ms -2 initial value: 10ms/1.085us = 9216 ticks
= 65535-init_value+1 = 9216 = init_value = DCO00

* We need to use mode 1 (16-bit timer, but not auto-reload)

ORG 0 ISR _TO:

LIMP MAIN CPL P1.2
jmmmmmmmmmmm e ISR for Timer 0-------==-----cmmm - MOV TLO, #00

ORG 000BH MOV THO, #0DCH

LCALL ISR _TO ; store ISR elsewhere RET

RETI

ORG 30H

MAIN: MOV TMOD, #01H ; timer 0, mode 1
MOV TLO, #00H
MOV THO, #0DCH

MOV IE, #82H ; enable timer O interrupt
SETB TRO ; start timer
SIMP $

END

OUTLINE

12

 External Hardware Interrupts

13
EXTERNAL INTERRUPT

« External interrupts INTO and INT1
— INTO: P3.2, ISR starting address: 0003H
— INTI1: P3.3, ISR starting address: 0013H

— Upon activation of these pins, the 8051 gets interrupted in whatever it is doing
and jumps to the corresponding ISR

— Two types of interrupts activation signals
* Level triggered interrupt (default interrupt mode)
— INTO and INT1 is normally high
— If alow level signal is applied to them, interrupt is triggered.

— If the low level signal is not removed after the execution of ISR, it
will be interpreted as a new interrupt.

» Edge triggered interrupt

— If a high-to-low signal is applied to P3.2 or P3.3, interrupt is
triggered

14
EXTERNAL INTERRUPT: LEVEL TRIGGERED

* Level triggered interrupt is the default mode for external interrupt

 Example

— Assume INT1 is connected to a switch that is normally high. Whenever it
goes low, it should turn on an LED. The LED should stay on for a fraction of

second. v
cC
ORG OH 8051
LIMP MAIN P13 o

ORG 0013H

SETB P1.3

MOV R3, #255
BACK: DINZ R3, BACK

CLR P1.3

RETI

ORG 30H
MAIN: MOV IE, #10000100B
HERE: SIMP HERE . 5
END

| EA | - ET2 | ES | ET1 | EX1 | ETO | EXO

EXTERNAL INTERRUPT: EDGE TRIGGERED

 Edge triggered
— Level triggered interrupt is the default interrupt mode.

— In order to change to edge triggered mode, we need to set the TCON register
D7 DO

‘TFIlTRllTFDlTRD"IEllITl|IED|ITD|
TF1: timer over flow flag. (HERE: JNB TF1, HERE)
TR1: start or stop timer. (SETB TR1, CLR TR1)

IT1: interrupt mode selection. Default is 0

— IT1 = 0: level triggered (triggered by low level)
— IT1 = 1: edge triggered (triggered by H-to-L)

IE1: external interrupt 1 edge flag.
— It’s set to 1 when H-to-L 1s detected

— It’s automatically cleared when the interrupt is processed (after
RETI 1s executed).

» When IE1 = 1, no more interrupt will be recognized = avoid
interrupt in an interrupt.

— If IT1 = 0 (level triggered), IE1 is not used at all.

16
EXTERNAL INTERRUPT: EDGE TRIGGERED

 Example

— Assuming P3.3 (INT1) is connected to a pulse generator. Write a program in
which the falling edge of the pulse will send a high pulse to P1.3, which is
connected to an LED.

ORG 0000H
LIMP MAIN

ORG 0013H

SETB P1.3

MOV R3, #255
BACK: DJINZ R3, BACK

CLR P1.3

MAIN: SETB TCON.2 ; make INT1 edge-triggered interrupt
MOV IE, #10000100 ; enable external INT1

HERE: SJIMP HERE
END

D7 DO
TCON |TF1|TR1|TFD|TRD|| IEllIT1|IED|IT'D|

D7 DO

1IE | EA | - | ET2 | BS | ET1 | EX1 | ET0 | EX0 |

EXTERNAL TRIGGER: EDGE TRIGGERED

17

« Additional notes for edge triggered interrupt

— Minimum pulse duration to detect edge-triggered interrupts (XTAL =
11.0592MHz)

I'MC 1.085 ps
1.083 ps -~
' I MC

— Once H-to-L edge is detected, IEn will be set to 1 (IEn =1EO or IE1)
* IEn 1s called “Interrupt in service” flags

— IEn will stay high inside ISR
* When IEn = 1, no more H-to-L interrupts will be accepted.

— RETT has two functions
* Pop up the top of the stack to PC (same as RET)

* Clear IEn to 0 (we do not need to clear IEn manually)

OUTLINE

18

* Serial Port Interrupts

SERIAL PORT INTERRUPT

« Review: serial port communication

MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV THI1, #-3 ; 9600 baud
MOV SCON, #50H ; 0101 0000, initialize SCON register
SETB TR1 ; start timer
R TX =mmmmmmmmmmmm e
MOV SBUF, #Y’ ; store ‘A’ in SBUF
HERET: JNB TI, HEREI ; polling TI
CLR TI
jmmmmmmmm- |
HERE2: JNB RI, HERE2 ; polling RI
MOV A, SBUF
CLR RI

— Tx: when Tx is successful, TI is set to 1
— Rx: when a new byte arrives, Rl is set to 1
— Constantly polling TT and RI to check the status of Tx and Rx

20

SERIAL PORT INTERRUPT

* Serial port interrupt

Only 1 interrupt and 1 ISR assigned to serial port communication for both Tx
and Rx

ISR entrance address: 0023H

When TT or RI is raised, an interrupt is generated, and PC will jump to 0023H
to execute the corresponding IRS

How do we tell if the interrupt is generated by T1 or RI flag?

 In the ISR, we must examine the RI and TI flag to see which one
triggered the interrupt.

» Before executing RETI, we must clear RI or TI flag

— So in the next serial port interrupt we will still be able to distinguish
Tx interrupt from RI interrupt

SERIAL PORT INTERRUPT

21

 Example

— Write a program in which the 8051 gets data from P1 and sends it to P2
continuously while incoming data from the serial port is sent to PO. Assume

that XTAL = 11.0592MHz. Set the baud rate at 9600.

MAIN:

BACK:

ORG 0

LIMP MAIN

ORG 23H

LJIMP SER ; jump to serial ISR
ORG 30H

MOV P1, #0FFH ; make P1 an input port
MOV TMOD, #20H ; timer 1, mode 2
MOV TH1, #-3 ; 9600 baud

MOV SCON, #50H

MOV IE, #10010000B ; enable serial interrupt

SETB TR1 ; start timer 1
MOV A, P1 ; read data from P1
MOV P2, A ; send it to P2
SIMP BACK

DO

| - ET2 |

ES

| ET1 | Ex1 | ET0 | EX0

SER:

TX:

ORG 100H

JB TI, TRANS
MOV A, SBUF
MOV PO, A
CLR RI

RETI

CLR TI

RETI

END

SERIAL PORT INTERRUPT

22

D7

Example

— Write a program

* (1) Make timer 0 generate a square wave of SKHz on P0.1

* (2) Receive data serially and send it to PO at 4800 baud

MAIN:

ORG O

LIMP MAIN

ORG 000BH
LJMP TIMER ISR
ORG 0023H

LJMP SER_ISR
ORG 30H

MOV TMOD, #22H
MOV THI, #-6

MOV THO, #-92
MOV SCON, #50H
MOV IE, #10010010B
SETB TR1

SETB TRO

SIMP $

DO

EA |

eT2 | Bs | ETi | Exi | ETO | EX0

; 4800
; delay = 100 us

; serial port and timer 0

Interrupt ROM Location (Hex) Pin Flag Clearing
Reset 0000 9 Auto

External hardware interrupt 0 (INT0) 0003 P3.2(12) Auio

Timer 0 interrupt (TFQ) 000B Auto

External hardware interrupt 1 (INT1) 0013 P3.3 (13) Auto

Timer | interrupt (TF1) 0018 Auto

Serial COM interrupt (RI and TI) 0023 Programmer

clears it.

SERIAL PORT INTERRUPT

 Example

— Wirite a program. Once 8051 receives a character from serial port, it will send

back (1) the received character (2) carriage return (ASCII: ODH) (3) line
break (ASCII: 0AH) to serial port to display them on Hyper terminal. Use
interrupt for Rx and polling for Tx.

ORG O
LIMP MAIN
ORG 23H
LIJMP SER_ISR ; jump to serial ISR
ORG 30H

MAIN:
MOV TMOD, #20H ; timer 1, mode 2
MOV THI, #-3 ; 9600 baud
MOV SCON, #50H
MOV IE, #10010000B ; enable serial interrupt
SETB TR1 ; start timer 1
SIMP $

SER ISR:

Question: what will happen if we also use interrupt for Tx?

OUTLINE

24

* Interrupt Priority

INTERRUPT PRIORITY

25

e Interrupt priority

— What will happen if two or more interrupts are activated at the same time?

— The 6 interrupts have different priorities

— When two or more interrupts are activated simultaneously, interrupt with

higher priority will be served first.

Highest to Lowest Prioritx

External Interrupt 0

(INTO)

Timer Interrupt 0

(TF0)

External Interrupt 1

(INT1)

Timer Interrupt 1

(TF1)

Serial Communication

(RI + TI)

Timer 2 (8052 only)

TF2

INTERRUPT PRIORITY

26

e Setting interrupt priority with the IP register

— The interrupt priority can be changed by programming the IP register

— IP register (Interrupt Priority Register)

D7

DO

PT2

PS | PT1

PX1

PTO | PX0

* When power up, all bits in IP register are 0 = default priority order

 To assign a high priority to an interrupt, set the corresponding bit to 1 =
The interrupt with IP bit set to 1 has the highest priority among all

interrupts.

» If more than one bit are set to 1, their relative priorities are determined by
the default priority order

* Interrupts with priority bits set to 1 have higher priority than interrupts
with priority bits being 0.

27
INTERRUPT PRIORITY

 Example

— Order the interrupt based on their priorities from high to low after the

instruction: MOV IP, #00001100B Highest to Lowest Priority

External Interrupt 0 (INTO)
Timer Interrupt 0 (TFO)
External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)
Serial Communication (RI + TT)
Timer 2 (8052 only) TF2

D7 DO

| -- I - I PT2 I PS I PT1 I PX1 I PTO I PX0 |

— Program the IP register to assign the highest priority to INT1, then discuss
what happens if INTO, INT1, and TFO are activated at the same time

28
INTERRUPT PRIORITY

e Interrupt inside an interrupt
— What happens if another interrupt happens during the execution of ISR?

 If the new interrupt has a higher priority than the interrupt that is
currently being responded, the CPU will

— 1. immediately jump to the ISR of the new interrupt.

— 2. Upon finishing the new ISR, come back to the original ISR being
served.

« If the new interrupt has a lower priority than the current interrupt, the
CPU will

— 1. finish the current interrupt,
— 2. then jump to the ISR of the new interrupt

29
INTERRUPT PRIORITY

* Triggering the interrupt by software

— We can manually activate an interrupt by setting the corresponding interrupt
flag with software

* By this way we can test the operation of ISR without actually incurring

interrupt.
» E.g. if the IE bit of Timer 1 is set, SETB TF1 will generate an interrupt
for timer 1
— Example
ORG 0000H
LIMP MAIN ; by pass interrupt vector table
jmmmmmmm e timer 0 ISR --————————————-
ORG 000BH ; timer 0 ISR
CPL P2.1 ; toggle P2.1
RETI ; return from ISR
jmmmmmmmmmm e main program--------------
ORG 0030H
MAIN: MOV IE, #82H ; IE=10000010
SETB TF1 ; the ISR will be executed

END

OUTLINE

30

e Interrupt Programming in C

PROGRAMMING IN C

e Interrupt programming in C

— A unique number is assigned to each interrupt

Interrupt Name Numbers used by 8051 C
External Interrupt 0 (INTO) 0
Timer Interrupt 0 (TFO) 1
External Interrupt 1 (INTI) 2
Timer Interrupt 1 (TF1) 3
Serial Communication (RI + TT) 4
Timer 2 (8052 only) (TF2) 5

— How to write an ISR in C
void timerOISR(void) interrupt 1

* The keyword “interrupt 1” followed by the name of the subroutine
indicates

— 1. this is an ISR
— 2. It will be activated by interrupt 1 (timer 0)

PROGRAMMING IN C

 Example

— Write a C program that continuously gets a single bit of data from P1.7 and sends it to
P1.0, while simultaneously creating a square wave of 200 us period on pin 2.5

#include <reg51.h>

sbit SW = P1"7;

sbit IND = P10

sbit WAVE = P2"5;

void timerO(void) interrupt 1

{
WAVE = ~WAVE;
J
void main(void)
{
SW=1;
TMOD = 0x02;
THO = 0XA4;
IE = 0x82;
while(1)
{
IND =SW;
H
J
D7 DO

| EA | - ET2 | BS | ET1 | EX1 | ETO | EXO

PROGRAMMING IN C

« Example: write a C program using interrupts to do the following
* (1) Rx data serially and send it to PO
* (2) Read port P1, transmit data serially, and give a copy to P2
* (3) Make timer 0 generte a square wave of SKHz on P0.1

#include <reg51.h> void main(void)
sbit WAVE = P0"1; { unsigned char x;
void timer(Q() interrupt 1 P1 = OxFF;
{ WAVE =~WAVE; TMOD = 0x22;
} THI1 = 0xF6; // 4800 baud
void serial0O() interrupt 4 SCON = 0x50;
{ THO = 0xA4; // 5KHz, delay = 100us
if (RI==1) IE = 0x92;
{ PO = SBUF; TR1 =1;
RI=0; TRO = 1;
} while(1)
} { x =P1,
SBUF = x;
while (TI == 0);
TI=0;
P2 =x;
D7 DO)

EA | - ET2 | BS | ET1 | EX1 | ETO | EXO }

