
Department of Electrical Engineering
University of Arkansas

ELEG3923 Microprocessor
Ch.11 Interrupts

Dr Jingxian WuDr. Jingxian Wu
wuj@uark.edu

2

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

INTERRUPTS
3

• What is interrupt?
– Example: timer

MOV TMOD, #02 ; 1. timer 0, mode 2 (8-bit auto reload)
HERE: MOV TH0, #3EH ; 2. load init value

SETB TR0 ; 3. start timer
AGAIN: JNB TF0, AGAIN ; 4. monitor TF0 until timer overflows

CLR TR0 ; 5. stop timer
CLR TF0 ; 6. clear flag

– Polling: the CPU continuously monitor the status of a device (e.g. check the
status of TF0, wait until TF0 turns to 1)

Th t t it i t l t f MCU• The status monitoring process wastes a lot of MCU resources
– Interrupt

• Whenever any device needs service (e.g. timer expires), it will notify the
MCU by sending an interrupt signalMCU by sending an interrupt signal.

• Upon receiving the interrupt signal, the CPU interrupts whatever it is
doing, and serve the device (e.g. stop timer) by executing a special
subroutine: Interrupt Service Routine (ISR)p ()

• Once ISR is done, CPU will go back to the location before interrupts.

INTERRUPTS
4

• Interrupt service routine
– Special subroutines to be executed by CPU upon interrupt
– Different interrupts have different subroutines

Start timer

Temperature sensing and display

Timer expires
Interrupt signal

ISR: ‘A’� P1
1 2

3
4

Temperature sensing and display

– Example: a program needs to (1) send the letter ‘A’ to P1 every 100ms; (2)
continuously sensing and display temperature

• 1 start timer then display temperature on display1. start timer, then display temperature on display
• 2. when timer expires, it sends an interrupt signal to CPU
• 3. CPU stops temperature sensing and jump to ISR
• 4 When ISR is over the CPU returns to where it left and continue4. When ISR is over, the CPU returns to where it left and continue

temperature sensing
– Multiple devices can be connected to MCU, each of them has their unique

ISRs. Whenever a device needs service, it will send interrupt to CPU and
CPU can execute the corresponding ISR.

INTERRUPTS: SIX INTERRUPTS IN 8051
5

• Six interrupts in 8051
– There are totally six different interrupts in 8051

• Each interrupt has its own ISR
• Each ISR has its unique starting address
• When a particular interrupt is detected by CPU, PC will jump to the

corresponding ISR starting address to execute the ISR.
i i (i)– Timer interrupts (2 interrupts)
• 1 interrupt for timer 0 (ISR starting address: 000BH)
• 1 interrupt for timer 1 (ISR starting address: 001BH)

– Serial ports interrupt (1 interrupt)
• 1 interrupt used to indicate Tx or Rx is done (ISR starting address: 0023H)

– External hardware interrupts (2 interrupts)
• P3.2: external interrupt 0 (INT0) (ISR starting address: 0003H)
• P3.3: external interrupt 1 (INT1) (ISR starting address: 0013H)

– Reset (1 interrupt)
• when reset is activated, the 8051 jumps to address 0 (ISR address: 0H)

INTERRUPTS: INTERRUPT VECTOR TABLE
6

• Interrupt vector table
– The starting address for each ISR

– If interrupts are enabled, ROM addresses 0003 – 0023 are taken by interrupt
vector table

• We need to bypass interrupt vector table
ORG 0
LJMP MAIN ; bypass interrupt vector table
;--------------------;--------------------
…… ;

; ISRs can be written from 0003 – 0029 H
;--------------------
ORG 30HORG 30H

MAIN: MOV A, #23H ; main prgram
…

INTERRUPTS: ENABLE INTERRUPT
7

• Enable/disable interrupts
– Upon reset, all interrupts are disabled: the CPU will not respond to any

interrupt.
I d i i b bl d b f– In order to use an interrupt, it must be enabled by software

– Register: IE (interrupt enable, bit addressable)

• EA=0: disable all interrupts. EA=1: each interrupt is enabled individually.
• ET2 = 1: enable interrupt for timer 2
• ES = 1: enable interrupt for serial portES 1: enable interrupt for serial port
• ET1 = 1: enable interrupt for timer 1
• EX1 = 1: enable external interrupt 1
• ET0 = 1: enable interrupt for timer 0• ET0 1: enable interrupt for timer 0
• EX0 = 1: enable external interrupt 0

– Example
MOV IE #10010110BMOV IE, #10010110B
MOV IE, #00010110B

8

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

TIMER INTERRUPTS
9

• Roll-over timer flag and interrupt
– Recall: when timer roll-over, TF0 or TF1 is set to 1
– Polling: HERE: JNB TF0, HERE

• The entire CPU is tied down and waiting for TF to be set to 1
– Interrupt

• If timer interrupt is enabled (SETB IE.3 for timer 0, SETB IE.5 for timer
)1),

– whenever TF0 or TF1 is set to 1, a timer interrupt will be
automatically generated

TIMER INTERRUPTS
• Example

10

• Example
– Write a program that continuously (1) gets 8-bit data from P0 and sends it to

P1 while simultaneously (2) create a square wave of 200 us period on P2.1
ORG 0000H
LJMP MAIN ; by pass interrupt vector table

;------------------timer 0 ISR ---------------
ORG 000BH ; timer 0 ISR
CPL P2.1 ; toggle P2.1
RETI ; return from ISR

;------------------ main program--------------
ORG 0030H

MAIN: MOV TMOD, #02H ; timer 0, mode 2 (auto-reload)
MOV P0 #0FFH iMOV P0, #0FFH ; input
MOV TH0, #-92 ; initial value
MOV IE, #82H ; IE = 10000010
SETB TR0 ; start timer
; P0� P1;--- P0� P1-----

BACK: MOV A, P0
MOV P1, A
SJMP BACK
ENDEND

1. Due to interrupt, we don’t need to monitor TF0
2. No need to clear TF0!

TIMER INTERRUPTS
11

• Example
– Write a program to generate a square wave of 50Hz frequency on P1.2.

• 50Hz � timer delay = 10ms � initial value: 10ms/1.085us = 9216 ticks
� 65535 i i l 1 9216� i i l DC00� 65535-init_value+1 = 9216� init_value = DC00

• We need to use mode 1 (16-bit timer, but not auto-reload)
ORG 0 ISR_T0:
LJMP MAIN CPL P1 2LJMP MAIN CPL P1.2

;---------------ISR for Timer 0------------------------------- MOV TL0, #00
ORG 000BH MOV TH0, #0DCH
LCALL ISR_T0 ; store ISR elsewhere RET
RETIRETI

;--
ORG 30H

MAIN: MOV TMOD, #01H ; timer 0, mode 1
MOV TL0 #00HMOV TL0, #00H
MOV TH0, #0DCH
MOV IE, #82H ; enable timer 0 interrupt
SETB TR0 ; start timer
SJMP $
END

12

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

EXTERNAL INTERRUPT
13

• External interrupts INT0 and INT1
– INT0: P3.2, ISR starting address: 0003H
– INT1: P3.3, ISR starting address: 0013H
– Upon activation of these pins, the 8051 gets interrupted in whatever it is doing

and jumps to the corresponding ISR
– Two types of interrupts activation signals

l i d i (d f l i d)• Level triggered interrupt (default interrupt mode)
– INT0 and INT1 is normally high
– If a low level signal is applied to them, interrupt is triggered.
– If the low level signal is not removed after the execution of ISR, it

will be interpreted as a new interrupt.
• Edge triggered interrupt

If hi h t l i l i li d t P3 2 P3 3 i t t i– If a high-to-low signal is applied to P3.2 or P3.3, interrupt is
triggered

EXTERNAL INTERRUPT: LEVEL TRIGGERED
14

• Level triggered interrupt is the default mode for external interrupt
• Example

– Assume INT1 is connected to a switch that is normally high. Whenever it
goes low, it should turn on an LED. The LED should stay on for a fraction of
second.

ORG 0H
LJMP MAINLJMP MAIN

;----------------ISR for INT1--------------------
ORG 0013H
SETB P1.3
MOV R3, #255

BACK: DJNZ R3, BACK
CLR P1.3
RETI

;-----------------Main Program----------------
ORG 30H

MAIN: MOV IE, #10000100B
HERE: SJMP HERE

END

EXTERNAL INTERRUPT: EDGE TRIGGERED
15

• Edge triggered
– Level triggered interrupt is the default interrupt mode.
– In order to change to edge triggered mode, we need to set the TCON register

• TF1: timer over flow flag. (HERE: JNB TF1, HERE)
• TR1: start or stop timer (SETB TR1 CLR TR1)• TR1: start or stop timer. (SETB TR1, CLR TR1)
• IT1: interrupt mode selection. Default is 0

– IT1 = 0: level triggered (triggered by low level)
IT1 = 1: edge triggered (triggered by H-to-L)– IT1 = 1: edge triggered (triggered by H-to-L)

• IE1: external interrupt 1 edge flag.
– It’s set to 1 when H-to-L is detected

It’s automatically cleared when the interrupt is processed (after– It s automatically cleared when the interrupt is processed (after
RETI is executed).

» When IE1 = 1, no more interrupt will be recognized � avoid
interrupt in an interrupt.p p

– If IT1 = 0 (level triggered), IE1 is not used at all.

EXTERNAL INTERRUPT: EDGE TRIGGERED
16

• Example
– Assuming P3.3 (INT1) is connected to a pulse generator. Write a program in

which the falling edge of the pulse will send a high pulse to P1.3, which is
connected to an LEDconnected to an LED.

ORG 0000H
LJMP MAIN

;--------------ISR for INT1-----------
ORG 0013H
SETB P1.3
MOV R3, #255

BACK: DJNZ R3, BACKBACK: DJNZ R3, BACK
CLR P1.3
RETI

;---------------Main--------------------
MAIN: SETB TCON 2 ; make INT1 edge triggered interruptMAIN: SETB TCON.2 ; make INT1 edge-triggered interrupt

MOV IE, #10000100 ; enable external INT1
HERE: SJMP HERE

END
TCONTCON

IE

EXTERNAL TRIGGER: EDGE TRIGGERED
17

• Additional notes for edge triggered interrupt
– Minimum pulse duration to detect edge-triggered interrupts (XTAL =

11.0592MHz)

– Once H-to-L edge is detected, IEn will be set to 1 (IEn = IE0 or IE1)Once H to L edge is detected, IEn will be set to 1 (IEn IE0 or IE1)
• IEn is called “Interrupt in service” flags

– IEn will stay high inside ISR
• When IEn = 1, no more H-to-L interrupts will be accepted.When IEn 1, no more H to L interrupts will be accepted.

– RETI has two functions
• Pop up the top of the stack to PC (same as RET)
• Clear IEn to 0 (we do not need to clear IEn manually)Clear IEn to 0 (we do not need to clear IEn manually)

18

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

SERIAL PORT INTERRUPT
19

• Review: serial port communication
MOV TMOD, #20H ; timer 1, mode 2 (8-bit auto-reload)
MOV TH1, #-3 ; 9600 baud
MOV SCON #50H ; 0101 0000 initialize SCON registerMOV SCON, #50H ; 0101 0000, initialize SCON register
SETB TR1 ; start timer
;--------- Tx -------------------
MOV SBUF, #’Y’ ; store ‘A’ in SBUF

HERE1 JNB TI HERE1 lli TIHERE1: JNB TI, HERE1 ; polling TI
CLR TI
;--------- Rx -------------------

HERE2: JNB RI, HERE2 ; polling RI
MOV A, SBUF
CLR RI

– Tx: when Tx is successful, TI is set to 1
Rx: when a new byte arrives RI is set to 1– Rx: when a new byte arrives, RI is set to 1

– Constantly polling TI and RI to check the status of Tx and Rx

SERIAL PORT INTERRUPT
20

• Serial port interrupt
– Only 1 interrupt and 1 ISR assigned to serial port communication for both Tx

and Rx
ISR dd 0023H– ISR entrance address: 0023H

– When TI or RI is raised, an interrupt is generated, and PC will jump to 0023H
to execute the corresponding IRS
How do we tell if the interrupt is generated by TI or RI flag?– How do we tell if the interrupt is generated by TI or RI flag?

• In the ISR, we must examine the RI and TI flag to see which one
triggered the interrupt.

• Before executing RETI we must clear RI or TI flag• Before executing RETI, we must clear RI or TI flag
– So in the next serial port interrupt we will still be able to distinguish

Tx interrupt from RI interrupt

SERIAL PORT INTERRUPT
21

• Example
– Write a program in which the 8051 gets data from P1 and sends it to P2

continuously while incoming data from the serial port is sent to P0. Assume
that XTAL = 11 0592MHz Set the baud rate at 9600that XTAL = 11.0592MHz. Set the baud rate at 9600.

ORG 0
LJMP MAIN
ORG 23H

ORG 100H
SER: JB TI, TRANS

MOV A SBUF
LJMP SER ; jump to serial ISR
ORG 30H

MAIN: MOV P1, #0FFH ; make P1 an input port
MOV TMOD, #20H ; timer 1, mode 2

MOV A, SBUF
MOV P0, A
CLR RI
RETI

MOV TMOD, #20H ; timer 1, mode 2
MOV TH1, #-3 ; 9600 baud
MOV SCON, #50H
MOV IE, #10010000B ; enable serial interrupt
SETB TR1 ; start timer 1

TX: CLR TI
RETI

END
SETB TR1 ; start timer 1

BACK: MOV A, P1 ; read data from P1
MOV P2, A ; send it to P2
SJMP BACK

SERIAL PORT INTERRUPT
22

• Example
– Write a program

• (1) Make timer 0 generate a square wave of 5KHz on P0.1
• (2) Receive data serially and send it to P0 at 4800 baud

ORG 0
LJMP MAIN
ORG 000BHORG 000BH
LJMP TIMER_ISR
ORG 0023H
LJMP SER_ISR
ORG 30H

MAIN: MOV TMOD, #22H
MOV TH1, #-6 ; 4800
MOV TH0, #-92 ; delay = 100 us, ; y
MOV SCON, #50H
MOV IE, #10010010B ; serial port and timer 0
SETB TR1
SETB TR0SETB TR0
SJMP $

SERIAL PORT INTERRUPT
• Example

– Write a program. Once 8051 receives a character from serial port, it will send
back (1) the received character (2) carriage return (ASCII: 0DH) (3) line
break (ASCII: 0AH) to serial port to display them on Hyper terminal Usebreak (ASCII: 0AH) to serial port to display them on Hyper terminal. Use
interrupt for Rx and polling for Tx.

ORG 0
LJMP MAIN
ORG 23H
LJMP SER_ISR ; jump to serial ISR
ORG 30H

MAIN:MAIN:
MOV TMOD, #20H ; timer 1, mode 2
MOV TH1, #-3 ; 9600 baud
MOV SCON, #50H
MOV IE #10010000B ; enable serial interruptMOV IE, #10010000B ; enable serial interrupt
SETB TR1 ; start timer 1
SJMP $

SER_ISR:

…….
Question: what will happen if we also use interrupt for Tx?

24

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

INTERRUPT PRIORITY
25

• Interrupt priority
– What will happen if two or more interrupts are activated at the same time?
– The 6 interrupts have different priorities
– When two or more interrupts are activated simultaneously, interrupt with

higher priority will be served first.

INTERRUPT PRIORITY
26

• Setting interrupt priority with the IP register
– The interrupt priority can be changed by programming the IP register
– IP register (Interrupt Priority Register)

• When power up, all bits in IP register are 0 � default priority order
• To assign a high priority to an interrupt, set the corresponding bit to 1 �

The interrupt with IP bit set to 1 has the highest priority among all
interrupts.

• If more than one bit are set to 1, their relative priorities are determined byIf more than one bit are set to 1, their relative priorities are determined by
the default priority order

• Interrupts with priority bits set to 1 have higher priority than interrupts
with priority bits being 0.

INTERRUPT PRIORITY
27

• Example
– Order the interrupt based on their priorities from high to low after the

instruction: MOV IP, #00001100B

– Program the IP register to assign the highest priority to INT1, then discuss
what happens if INT0, INT1, and TF0 are activated at the same time

INTERRUPT PRIORITY
28

• Interrupt inside an interrupt
– What happens if another interrupt happens during the execution of ISR?

• If the new interrupt has a higher priority than the interrupt that is
l b i d d h CPU illcurrently being responded, the CPU will

– 1. immediately jump to the ISR of the new interrupt.
– 2. Upon finishing the new ISR, come back to the original ISR being

servedserved.
• If the new interrupt has a lower priority than the current interrupt, the

CPU will
– 1 finish the current interrupt– 1. finish the current interrupt,
– 2. then jump to the ISR of the new interrupt

INTERRUPT PRIORITY
29

• Triggering the interrupt by software
– We can manually activate an interrupt by setting the corresponding interrupt

flag with software
B hi h i f ISR i h ll i i• By this way we can test the operation of ISR without actually incurring
interrupt.

• E.g. if the IE bit of Timer 1 is set, SETB TF1 will generate an interrupt
for timer 1for timer 1

– Example
ORG 0000H
LJMP MAIN ; by pass interrupt vector table; y p p

;------------------timer 0 ISR ---------------
ORG 000BH ; timer 0 ISR
CPL P2.1 ; toggle P2.1
RETI ; return from ISRRETI ; return from ISR

;------------------ main program--------------
ORG 0030H

MAIN: MOV IE, #82H ; IE = 10000010
SETB TF1 th ISR ill b t dSETB TF1 ; the ISR will be executed
END

30

OUTLINE

• 8051 Interrupts

• Timer Interrupts

• External Hardware Interrupts• External Hardware Interrupts

• Serial Port Interrupts

• Interrupt Priority

• Interrupt Programming in C

PROGRAMMING IN C
• Interrupt programming in C

– A unique number is assigned to each interrupt

– How to write an ISR in C
void timer0ISR(void) interrupt 1
{

…….
}

• The keyword “interrupt 1” followed by the name of the subroutine
indicates

1 hi i ISR– 1. this is an ISR
– 2. It will be activated by interrupt 1 (timer 0)

PROGRAMMING IN C
• Example

– Write a C program that continuously gets a single bit of data from P1.7 and sends it to
P1.0, while simultaneously creating a square wave of 200 us period on pin 2.5

#include <reg51 h>#include <reg51.h>
sbit SW = P1^7;
sbit IND = P1^0
sbit WAVE = P2^5;
void timer0(void) interrupt 1
{

WAVE = ~WAVE;
}
void main(void)
{{

SW = 1;
TMOD = 0x02;
TH0 = 0XA4;
IE = 0x82;
while(1)
{

IND = SW;
}

}}

PROGRAMMING IN C
• Example: write a C program using interrupts to do the following

• (1) Rx data serially and send it to P0
• (2) Read port P1, transmit data serially, and give a copy to P2
• (3) Make timer 0 generte a square wave of 5KHz on P0 1• (3) Make timer 0 generte a square wave of 5KHz on P0.1
#include <reg51.h>
sbit WAVE = P0^1;
void timer0() interrupt 1
{ A A

void main(void)
{ unsigned char x;

P1 = 0xFF;
TMOD 0 22{ WAVE = ~WAVE;

}
void serial0() interrupt 4
{

TMOD = 0x22;
TH1 = 0xF6; // 4800 baud
SCON = 0x50;
TH0 = 0xA4; // 5KHz, delay = 100us

if (RI = = 1)
{ P0 = SBUF;

RI = 0;
}

IE = 0x92;
TR1 = 1;
TR0 = 1;
while(1)

} { x = P1;
SBUF = x;
while (TI = = 0);
TI = 0;;
P2 = x;

}
}

